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1. SUMMARY

The objective of this project was to develop and prototype an end-to-end architecture for defending
against “malware” and establishing end-to-end trust. The performers defined “end-to-end” as
spanning computing platforms from Internet of Things (IoT) sensors and actuators or mobile
devices to servers which could be cloud based, stand alone or traditional mainframes. In this
environment it was observed “trust” cannot be established if the software components of any part
of the Trusted Computing Base (TCB) were unknown or unverified. This definition of trust is
similar to the one used by the Trusted Computing Group (TCG) for the definition of the Trusted
Platform Module (TPM). It is noted that for long running systems, establishing trust at boot may
be insufficient for continuation of trust at an arbitrary point in the future. If the design of the system
permits undetectable attacks against memory, continuous trust must be established. Our conclusion
is that for the smallest devices where the dynamic memory is typically inaccessible to attackers
and the software operating the device may be replaceable or upgradeable, secure boot is necessary
and trusted boot is sufficient. As devices become more capable these technologies combined with
the work described herein become necessary.

1.1. SUMMARY OF PROTOTYPES DEVELOPED

This project developed a number of different prototypes, targeted for the different computing
platforms, as we outline below.
e Mobile/Embedded prototypes with security enhancements
o Secure firmware enhancements for representative embedded Linux devices
0 Mobile platform with integrity management and verification for different
“personalities”.
0 Trust Dust: Secure Cyber Physical/loT platform with embedded hardware root of
Trust — demonstrated at the 2013 Pl Meeting
e Access Control Monitor ACM a server side architecture
0 We build two simulation environments for enhanced general-purpose processor
architectures, targeted for secure server platforms. Please note that a summary of
our proposed hardware-enabled security architecture for server platforms and its
evaluation is provided in the draft paper included in 6.
= A PowerPC Book Il compliant processor in the Bluespec language,
emulated on a field programmable gate array (FPGA) platform
= An IBM Power Server central processing unit (CPU) software simulation
platform, based on a commercial IBM Power Systems processor
o0 ACM Firmware (previously referred to as Ultravisor): we have developed a
prototype firmware component which manages the ACM hardware extensions and
which is in the process of being transferred to our IBM Systems Group partners.
= We tested and validated this prototype by booting the Linux/KVM
hypervisor on the ACM hardware model and then booting secure virtual
machines on top of Linux/KVM.
= We demonstrated that the ACM firmware function is transparent to any
Virtual Machine that is not exploiting the ACM/SB++ functionality.
= We started our prototype from a “barebones ACM firmware" and have been
improving it and adding functionality as the project evolved.
0 Tools for building and deploying secure virtual machines (SVMs)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
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= Created Linux command line utilities for building SVMs from existing VMs
in Power Linux

= Designed and developed a secure bootstrap loader for launching SVMs in
PowerKVM

= Made appropriate modifications to the Open Firmware boot process and
Petitboot (git://ozlabs.org/ jk/petitboot) to create the initial bootstrap loader
for booting SVMs

1.2. SUMMARY OF TECHNOLOGY TRANSITIONACTIVITIES

Commercialization: The processor hardware and firmware security architecture developed
is pursued for commercialization with the IBM Systems Group and specifically IBM
servers. In particular, a derivative of the ACM hardware extensions and associated ACM
firmware are planned for release in a next generation Power processor. The planned feature
was referred to as “trusted execution enforced by hardware” in a recent presentation by
IBM, titled “POWER9: Processor for the Cognitive Era”, at the Hot Chips Conference [7].
The relevant slides from this presentation are extracted and included in Appendix A. The
embedded/mobile and cyber-physical security assets (including “Trust Dust”) are pursued
within IBM, in particular the recently formed loT division, and with selected partners.
Standards: “Trust Dust”, the early prototype of the value of embedded TPM for cyber-
physical systems influenced the creation of the Trusted Computing Group (TCG) loT
Subgroup (referred to as a root of trust for measurement (RTM)).

Open Source Software Contributions: As mentioned in 3.2.1 our approach leverages and
builds on the Trusted Computing model. In particular, our work on the secure mobile
prototype motivated additional requirements for the virtual Trusted Platform Module
(VTPM) and led to a new vTPM implementation (tpm server cuse) that was open sourced,
along with the requisite extensions to quick emulator (QEMU) and libvirt.
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2. INTRODUCTION

This report is organized as follows. In Section 3 we describe our approach to this project, including
the key assumptions, methods and procedures we employed in the course of our research. We
break these down across the different platforms where we pursued hardware-enabled security;
mobile, FPGA-emulator and server class processor. In Section 4 we outline the key results, again
along the different platforms, and discuss their benefits, comparison with competitive offerings
and status of commercialization. Next, we present the conclusions of our project in Section 5 and
include references in Section 6. Additionally, the report includes an appendix which lists
academic publications generated by this project. Finally, at the end there is a list of all
symbols, abbreviations and acronyms used in this report.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
3



3. METHODS ASSUMPTIONS AND PROCEDURES

As described earlier we developed an end-to-end architecture, consequently this project worked
on the one end on client devices, such as 10T and mobile platforms, and on the other end on higher
performance servers. First, we will describe how we approached the IoT sensor, actuator and
mobile device platforms, followed by a description of our work our methodology and assumption
on the server end.

3.1. MOBILE

In this section, we describe our approach to developing a secure mobile platform. Our objective is
to develop an architecture that supports separation between multiple personalities on the same
platform. As an example, a personal mobile phone or tablet is used within an enterprise to access
corporate data and applications, in additional to personal applications. The different personalities
separate and safeguard enterprise from personal data and applications in a bi-directional manner.

While some prior work has focused on how to provide “sandboxing” and isolation between
different applications and/or containers running on the same mobile platform, less emphasis has
been placed on verifying the integrity of these applications and/or containers. In this work, the
initial focus is on mobile containers of Virtual Machine granularity, trying to leverage the
capabilities available through virtualization technologies like those present in servers and
desktops. This was possible for this project as new mobile processors with hardware virtualization
support became available. The technologies that were developed verified the integrity and
trustworthiness of different virtual machines, which correspond to different personalities. This
project also leveraged secure and trusted boot capabilities that were developed for embedded Linux
devices.

3.1.1. GOALS The mobile prototype is a key component of our end-to-end security architecture,
offering a practical demonstration realized in an actual mobile device. It demonstrates the
combination of isolation, integrity measurement (trusted boot), integrity appraisal (secure boot),
and remote attestation, and it was implemented on hardware representative of the mobile space (as
described below), including phones, tablets, and books (ebooks, netbooks and Chromebooks). The
specific goals were:

= Mobile Compatible Hardware

= Multiple VMs (Personalities) to isolate domains

= Measured/Appraised/Attested Native and VMs

= Trusted and Secure boot with hardware root of trust

= Field Deployable

3.1.2. HARDWARE For the prototype we selected the Samsung ARM Chromebook. This is a
representative platform for the mobile environment, since it has a hardware architecture, which is
compatible across the phone/tablet/book spectrum, while supporting the project requirements for
isolation and integrity management. In particular, it has:

= The same base hardware as the Galaxy S4 phone

= Acorn RISC machine (ARM) A15 cores (with hardware virtualization support)

= 1GB random access memory (RAM), 16GB Flash

= Trusted Boot with Hardware TPM

= Secure Boot with SPI Hardware Protected Mode (HPM)

= Perfect prototype for Phone/Tablet/Book use cases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
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The ARM A15 cores are the first mobile cores capable of supporting virtualization, and kernel
virtual machine (KVVM) in particular is supported as of Linux Kernel 3.11. As this is the same SoC
(Samsung Exynos 5250), with the same flash and RAM sizes as the international version of the
Galaxy S4 phone, this hardware is representative of a significant portion of the mobile market *.

The Chromebook also contains a TPM chip, which provides the needed hardware root of trust for
measurement and attestation. In addition, the Chromebook has a hardware root of trust for secure
boot, based on hardware write-protection of the bootstrap SPI ash, and the u-boot boot code
implements secure boot (Samsung calls it “verified boot”) based on this hardware write-protection.
In fact, this verified boot makes it difficult to install our own new kernel that supports KVM, as
we do not have Google's private key for signing the new kernel. The solution for this problem is
described in section 3.1.5.

3.1.3. SOFTWARE ARCHITECTURE Starting from the Chromebook hardware platform,
this project removed the base Chromium OS software that comes pre-installed, and installed our
own version of Linux (based on Ubuntu), which supports running multiple isolated personalities
(KVM Virtual Machines) of Android, while including our overall integrity architecture with
integrity measurement, appraisal, and attestation, both for the native Linux, and for the Android
guests. The overall architecture developed in this project is shown in Figure 1.

3.1.4. INTEGRITY COMPONENT DESCRIPTIONS Figure 1 shows the overall
software architecture, with the base Linux kernel and window management, and Android guests
running on KVM. In addition, it shows the integrity components added. These components have
been developed separately by IBM and other open source community contributors, initially
targeted for desktop and server environments. These integrity components are:
=  TPM - this is the hardware TPM, which is used as the root of trust for measurement and
attestation for the native Linux system (native kernel, and stripped down Ubuntu based
user space.) This is a standard part of the Chromebook, although the standard Chromium
OS does not take advantage of it as a measurement root of trust.
= SWTPM - this is the software based TPM emulator [1]. This is used to provide emulated
TPM service to the KVM guests. This code is added to the native Linux system, and is
measured/appraised/attested as part of the native system. It provides TPM services to the
guests, with guarantees similar to a physical TPM, as this software is outside of the running
guests, so they cannot tamper with it, just as a native OS cannot tamper with the physical
TPM.
= |IMA - (Integrity Measurement Architecture [2]) has several components, which provide
various integrity services. The base IMA maintains a kernel-based measurement list of all
files accessed, including all measurements of the boot chain. This list is anchored in PCR
10 of the TPM, and the TPM can sign PCR 10 with a private key known only to the TPM,
so this signature (called a TPM Quote) cannot be forged by the possibly corrupt OS. This
attestation is created and verified by the OpenAttestation (OAT) [3] client and server
components.

In addition, IMA has an appraisal module, which validates RSA signatures on all files

L Even though most mobile phones do not contain a TPM, there is an active standardization effort, for example in
the Trusted Computing Group (TCG), focused on defining a “TPM" for phones and smaller devices.
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Figure 1 Mobile Architecture

accessed. If a file's signature is invalid, access to that file is denied, even to root, thus
protecting the integrity of the running system. If a file has a valid signature, IMA appraisal
adds the measurement and signature information to the measurement list. The signature
data makes analysis of the measurement list much simpler and more scalable, as it provides
file provenance for all measurements (the signature includes the key fingerprint, which
identifies the signer of the file.) With the signature extensions, attestation verification
reduces to verifying the small number of signing keys used, rather than maintaining a large
list of all “good” file hashes.

IMA and IMA-Appraisal are upstreamed in the current Linux Kernel.

EVM - The extended verification module [2] module signs or HMAC's file metadata (the
inode and all of its security extended attributes, including the selinux label and IMA
signature) to prevent off-line attacks on the file's data or metadata.

TPMDD - this is the Linux kernel's TPM device driver for the native (physical) TPM. This
is already a standard kernel component.

OAT - OpenAttestation [3] includes a monitoring agent on the mobile device and on its
guest Android systems. The client agent provides the measurement list and the
corresponding TPM Quote, for remote attestation. The OAT server/verifier collects the
integrity reports, verifies them, and displays the results for all monitored systems on the
OAT portal.

The OAT client and server are extended to verify the IMA measurement list, and to provide
details and summary to the OAT server display.
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The remaining three components are patches to QEMU to support emulation of a TPM to KVM
guests [4]:
= eTPM - This is a the swTPM emulation, modified to fit into QEMU as a library, so that
QEMU can provide an emulated TPM service to its guests.
= eBIOS - This is an extension to the normal SEA BIOS used by QEMU as the virtual
machine's BIOS, to perform the necessary standard boot-time measurements for the guest.
= eTIS - This is the emulation of the hardware TPM interface added to QEMU to support the
guest. (TIS is the Trusted Interface Specification, which gives the details of the TPM chip
hardware interface on a nominal low pin count (LPC) bus.
An earlier implementation of this architecture on a server platform, applicable to trusted cloud
environments was presented and demonstrated in [6]. The work on these components in the open
source community has continued since then.

3.1.5. APPROACH TO IMPLEMENTATION The basic ARM/KVM installation on the
Chromebook, as enabled in kernel 3.11, is described in [5]. Though insightful, this paper has
serious limitations. It describes how to install KVVM only on an external SD card and turns off the
Chromebook's verified boot. It does not automate startup of guests or hide the native Ubuntu OS
at all. The instructions are incomplete or incorrect in several places. In addition to installing our
own Linux kernel natively (not only on an external SD card), we also have to add our desired
integrity components: IMA for the native and guest kernels, IMA-Appraisal for the native and
guest images, OAT clients for the native and guest systems, signing of all files, vTIS, vBIOS, and
VTPM support in the native QEMU.

Installation The Samsung Arm Chromebook has restricted boot (it is called verified boot or VB.)
The architecture of verified boot is illustrated in Figure 2.

In this architecture, the Google root key is locked in the SPI flash with HPM that prevents any
modification unless the device is disassembled, and a washer removed. Even then, there are no
instructions or scripts that support changing the root key.

The Chromebook's U-boot is locked in a 4MB serial programming interface (SP1) flash, so all of
the tools used in our prior embedded Linux security project are available to help read and write
the u-boot, once the chip is physically unlocked (and they can help recover the Chromebook, even
if it is accidentally bricked).

In order to achieve our objectives, the u-boot flash had to be unlocked so that the root key could
be replaced with our key. This enabled our project to sign the new KVM capable kernel, while
retaining secure and trusted boot supported by the hardware. Three scripts were developed to
automate this key replacement and kernel signing: make new keys, sign firmware and sign kernel.

Taking Control Instructions This is the process that was used to take control of the Chromebook:
= Disassemble Chromebook and remove 'WP washer

Enter Developer mode (esc-refresh-power)

Copy scripts to somewhere executable (/usr/local/takeown)

Press (ctl-alt->), login as chronos, sudo -i

/makekey (makes all new key pairs)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
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Jtakeown firmware.sh (signs RW u-boots and keys)

takeown kernel.sh (signs kernels and keys)

dev debug vboot (verifies all keys/signatures)

Modify RO u-boot to set power cycle protection

Save keys to usb, reboot, and follow prompts for normal mode

Sol SP1 Flash MMC Flash

Figure 2 Samsung verified boot

3.2. SERVER

This project worked on two variants of the server architecture that are related to one another. The
architecture was first developed as a formal model, which was proven. That model fulfilled the
basic principles listed in section 3.2.1. We worked on realizing this architecture with two different
but complementary approaches. The first was to modify an existing Bluespec model for a server
class PowerPC processor. The second was to modify an existing mambo model for an IBM Power
8 processor. These two approaches are reported on separately below.

3.2.1. BASIC PRINCIPLES The following are the basic principles of our approach.

= Protect integrity and confidentiality of both code and data

= Minimize the Trusted Computing Base (TCB) hardware and software that needs to be
trusted. In our case the TCB consists of the processor and a small amount of firmware that
manages hardware extensions

= Minimize changes on existing hardware and systems software to maximize
commercialization opportunity

= Ability to apply transparently to existing software

= Leverage as much as possible the existing TCG architecture for hardware root of trust

0 we aim to build on the TCG model; not to replace it

3.2.2. BASIC COMPONENTS To realize our objectives and basic principles, we derived our
approach from the following basic components.
= SecureBlue++: technology to create:
o Cryptographically protected enclaves corresponding to a process
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o Build and distribute protected software, which may be optionally encrypted using
a system key to protect distribution with secrets
= Leverage complementary trusted computing capabilities to verify capabilities of target
systems and manage system keys
= |Initial focus on Linux/KVVM hypervisor and Linux OS
= A Bluespec model of a server class PowerPC processor
= A mambo model of an existing IBM server

3.2.3. BUILDING THE ACM BLUESPEC FPGA MODEL OF A POWER PC
SERVER PROCESSOR This approach was done by modifying an existing Bluespec PowerPC
server class processor model. A demonstration was run on a Verilog simulator and was shown at
the DHS S&T PI meeting in December 2014. The architecture of the ACM Bluespec model is
shown in Figure 3.

This figure depicts the delineation between hardware and software. The hardware model consists
of a processor, connected to main memory over a memory bus and external devices over an 1/0
bus. The ACM hardware component is shown as connected to the processor. The software
components consist of the “ACM Software”, an operating system and two secure processes. Each
of the software components is labeled with a different color, which is the same as the color of the
memory that they are accessing.

Figure 4 shows the development flow that was employed in the construction of the ACM model
and the demonstration components. The processor architecture changes are coded in the Bluespec
language and translated into Verilog. The partition and synthesis tools, with input from the
infrastructure logic, generate FPGA images that are loaded onto our FPGA hardware platform,
shown in the icon. The software components that are part of the demonstration scenario (ACM
Software, OS and secure processes) are loaded onto the platform and a set of simulated events are
triggered to test how the ACM protects against unauthorized accesses. A trace is generated and by
inspecting it, we can confirm that the correct ACM operation took place. The detailed steps are
shown in the following sequence of figures, a subset of which were shown at the public
demonstration event organized by DHS S&T CSD R&D Showcase in December 2014.

Figure 5 provides a review of the key ACM concept and objectives.

Figure 6 shows how the ACM is integrated with the PowerPC (PPC) processor model through the
"glue logic" and the steps taken to prepare the hardware for the demonstration.

Figure 7 presents a synopsis of how the program is loaded onto memory.

Figure 8 shows our FPGA based emulation platform. It comprises of 28 daughter cards populated
with Xilinx Virtex-5 and Virtex-6 devices. Each daughter card has on board 32 MB of static RAM
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Figure 3 Architectural block diagram of the ACM Bluespec FPGA model

(SRAM) or 2GB of dynamic RAM (DRAM). These 28 daughter cards are mounted on a
motherboard. The motherboard has a board controller FPGA and four more FPGAs which are
primarily used for routing and logic between the 28 cards. All daughter cards as well as the
motherboard are connected to a host machine via 1Gb Ethernet cables running UDP. The host
machine runs a Server on top of Linux. This Server provides the tool control language (TCL) user
interface to the FPGA hardware. It is used to configure the FPGAs, load files directly into DRAM
or SRAM and issue commands to the board controller for single stepping or waveform extraction.

To produce configuration files for the FPGA devices we followed the following procedure:

1.
2.

3.

4.

Bluespec models of PPC + ACM were compiled to generate Verilog models.

VHDL models of clock controller, double data rate (DDR) DRAM controller were then
added to the above Verilog models.

The combined model was then synthesized using Xilinx tool chain to generate bit files for
configuration.

To load programs into the PPC memory, a haskell based custom compiler was built to
generate the object code. This object code was then directly loaded into the DRAM.

We observed a six percent increase in FPGA LUT utilization due to the addition of ACM to the
PPC core.

Software setup process isolation demonstration
The software is primarily divided into three code segments:

1.

Operating system (OS) code. The OS segment is further divided into:

a) Code to invoke ACM functions. We choose the location of this code at 0x0 address.
b) Code to handle ACM exceptions. We chose the location of this code at OxfO0 address.
c) Code to handle System calls. We chose the location of this code at 0xb00 address.

d) A simple scheduler was coded to schedule various tasks.
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2. Code performing some of the ACM functions (ACM firmware).
3. Secure domain code.

Architecture OS, AcmSw,
codedin Secure Process
BlueSpec codedinC
<- mkReg(0);
Verilog Hex Dump
Software
Simulator
Trace
Partition &
Synthesis

Infrastructure FPGA
logic Images

Figure 4 Design flow of ACM Bluespec FPGA model

3.2.4. MODIFYING AN EXISTING POWER PROCESSOR FOR ACM Our second
approach to ACM involves modifying a model of an existing IBM server. These modifications
introduce a new higher privileged mode into the architecture called ultravisor mode. In order to do
this we had to add new registers, interrupts, and instructions. A more detailed but still high level
introduction to these modifications can be found in the draft ASPLOS paper in Appendix A. This
paper describes these new features in the context of the existing Power ISAtm Version 2.07 B
architecture (P8). ACM also adds some new control bits in other parts of the architecture.

The Access Control Monitor (ACM) facility provides secure isolation of virtual machines and
applications from one another and from system software. ACM functionality is implemented using
a combination of hardware facilities and firmware that runs at a privilege level above the
hypervisor. ACM targets a threat model in which the hypervisor or operating system can be
compromised such that its inherent isolation capabilities can no longer be counted on.

The ACM protection mechanism is based on an assignment of virtual machines (VMs) and their
data to security domains. The hypervisor is in one security domain, along with all the VMs that do
not take advantage of the ACM security capabilities called normal virtual machines (or NVMs).
Each of the secure virtual machines (SVMs) is assigned to its own secure domain so that its data
(and state) can be protected from the others. Secure entity identifiers (SEIDs) are used to keep
track of the security domain to which a VM or page of memory belongs. Hardware enforces the
isolation boundaries associated with security domains based on the SEIDs.
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In particular, conventional OS can access pages of all domains

We will demonstrate that, with ACM, even OS cannot access contents of pages of other domains

When OS must handle a page of another domain, it is encrypted; it is decrypted when that page is

returned to the owning domain

Figure 5 ACM concept: confidentiality and integrity by isolation
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program in memory
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Figure 6 ACM demonstration hardware preparation

ACM firmware runs in Ultravisor mode, which is a privilege level above that of the hypervisor.
This firmware, along with the ACM hardware, is responsible for maintaining SEIDs associated
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Ignore the Nops (inserted for trace legibility)

0 IA=0000000000000000 Inst= 60000000 Nop

1 1A= 0000000000000004 Inst= 60000000 Nop

2 1A=0000000000000008 Inst= 3c000001 Addis

3 1A=000000000000000c Inst= 60000000 Nop

4 |A=0000000000000010Inst= 3c200001 Addis

5 1A= 0000000000000014 Inst= 60210000 LogicalType
6 |1A=0000000000000018 Inst= 18010000 NewAcm

0S issues newAcm command

Acm op intercepted; Acm created; return to OS

7 TA=1000000000000007c Inst= 60000000 Nop
8 |1A=0000000000000020 Inst= 60000000 Nop
9 1A= 0000000000000024 Inst= 60000000 Nop
10 |A=0000000000000028 Inst= 3c000002 Addis — OS issues newDomain command
11 1A= 000000000000002¢c Inst= 60000000 Nep
12 1A= 0000000000000030 Inst= 3c200002 Addis
13 IA=0000000000000034 Inst= 60210000 LogicalType

14 |A= 0000000000000038 Inst= 1¢010000 AcmNewDomain .
—— Acm op intercepted; Acm Op queued; return to OS

15 A= 000000000000003¢ Inst= 650000000 Nop
16 |A= 0000000000000040 Inst= 60000000 Nop
17 |1A= 0000000000000044 Inst= 60000000 Nop — 0OS decides to run the Acm domain process
18 IA= 0000000000000048 Inst = 60000000 Nop

19 IA= 000000000000004¢ Inst= c0000001 AcmResume

—— Context Switch intercepted

20 |A = 0000000000000050 Inst= 60000000 Nop
211A= 0000000000000054 Inst= 50000000 Nop
22 |A=0000000000000058 Inst= 3c000002Addis —— Acm domain runs; prepares domain D2; return to OS
23 1A= 000000000000005¢ Inst= 60000000 Nop

24 1A= 0000000000000060 Inst= 3c200002 Addis

25 |A= 0000000000000064 Inst= 60210000 LogicalType
26 |A = 0000000000000068 Inst= 64010722 AcmSwResp Context Switch intercepted

27 IA= 000000000000006¢ Inst = 50000000 Nop — OS decides to branch into a location in domain D2
28 1A= 0000000000000070 Inst= 48020002 BranchType

— Memory access intercepted; Acm faults invalid access

Figure 7 ACM demonstration: program loaded into memory

with processes and memory and enforcing the corresponding access restrictions. In addition, this
firmware provides oversight of hypervisor services, such as page table management, that must be
coordinated with SEID management. Finally, hardware mechanisms are in place to invoke ACM
firmware when a thread transitions between security domains, so that the state of the process in
one domain is not available to the process in the other domain.

In order to test the architecture modifications, it was necessary to build tooling to construct secure
virtual machines as well as ACM firmware to support the modifications.

ACM firmware Key Objectives, Requirements and Principles There are multiple objectives
that motivate the development of the ACM firmware software architecture.
= We want to further study how the different software components that comprise the ACM
firmware will interact with all the components of an ACM enabled system. This includes
low-level firmware, hypervisor, operating system, various libraries (including
cryptographic) and applications. This is especially important to support ACM
commercialization in IBM server platforms and to help IBM product and service groups
build offerings around the prototype research technologies.
= A detailed software architecture is essential for performing a security evaluation of the
system, which could be desirable.
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= |n addition to a security evaluation, detailed documentation of our software would be
important for acceptance by the open source community, if and when parts of our overall
architecture are open sourced. We note that IBM and IBM Research has been a leading
contributor to open source security solutions, for example in the area of Linux security
(Linux Integrity) and Trusted Computing.

DDR MEMORY

BOARD
CONTROLLER

2

Bluespec+xilink ~ Handcoded
generated bitfiles memory
tor the fpga contents

S— P

Figure 8 FPGA based emulation platform

The ACM firmware provides ultravisor calls that manage SVMs, provides “shim™ code for
intercepted interrupts, handles protection violations, and provides oversight of hypervisor
functions. Our objective is to make the ACM firmware as transparent as possible to other software
running on a system and to have minimal performance overhead.
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The following assumptions/requirements guided the initial development of the ACM firmware
prototype. They were motivated by a desire to integrate with the IBM OpenPOWER and Power
architectures.

In steady state, (after it has started) the ACM firmware only responds to interrupts and it
has no timer. The ACM firmware functions are time limited and no function should take
longer than the hypervisor interrupt time. Similarly, the ACM firmware has no idle loop.
The ACM firmware must be thread safe: it operates on the thread of the process that was
active when it got control.

When ultravisor mode is active, even when there is no ESM (Enter Secure Mode)
instruction or ultravisor call, it must handle SEID faults and perform allowable operations
on restricted registers. The ACM firmware provides oversight of hypervisor services, such
as page table management, that must be coordinated with SEID management.

The SEID table is an ultravisor mode resource, and therefore must be placed in storage to
which only the ACM firmware has write access. Furthermore, the contents of the SEID
Table must be such that non-ultravisor mode software cannot modify storage that contains
ACM firmware programs or data.

The ACM firmware is responsible for measurement and attestation of the Hypervisor (or
the next program to execute) in order to verify its integrity. This function may also be
performed by Host boot.

Tooling for Building SVMs Tooling needs to enable and support the following objectives:

Provide protection for virtual machines running on Linux/KVVM on Power (Open-POWER
platform). This implies that virtual machines are protected from a potentially compromised
Linux/LVVM hypervisor/host and at the same time the Linux/KVVM host is protected from
the VMs.

As envisioned by the SecureBlue++ model, the architecture should protect the virtual
machine no matter where it is. That means unauthorized software cannot read or
undetectably write the disk image or read/tamper with the VM while it is executing.
Minimize changes to QEMU, Linux and KVM.

Create secure virtual machines that run as guests, with one or more secure disks. The secure
virtual machine (SVM) has all the capabilities of a regular virtual machine. First targets are
Linux virtual machines.

Figure 9 shows the Linux/KVM environment on POWER Systems and the steps involved in
booting a Linux Virtual Machine. Furthermore, Figure 10 shows the interaction between the
QEMU process and guest VMs.

Given this environment of Linux/KVM/QEMU and guest VMs on POWER Systems, we proposed
the conceptual view of SVMs (Secure VMS) in Figure 11.

Our proposed SVM is a modified VM image that consists of the following:

Customized bootloader containing:
o0 Boot wrapping code instrumented with ultracalls, e.g. ESM, and embedded Linux
kernel with Petitboot application
0 Secure Object - encrypted with the ACM public key and decrypted and interpreted
by the ACM firmware
Boot partition integrity protected w. digital signatures
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= Linux/KVMruns natively on the bare-hardware
— KVM is a kernel module, exploiting hardware
virtualization capabilities (e.g., virtual CPUs)

* QEMU hosts guestVMs on KVM
— runs as a user process on top of Linux with KVM
— manages VMs (create, stop/start, delete, etc.)
— handles 10 between guestand KVM

VM
Configuration
XML

= Guestconsists of configuration file andimage file
containingan OS

= Tostarta virtualmachine QEMU
— builds device tree
— loads SLOF (open firmware)

= Execution of the virtual machine startsin SLOF and
then movesto Grub

= Grub uses SLOF to load the Linux kernel and the initram
fromthe disk Image, and then transfers control to the
kernel

= The kernel runs and mounts the file system
— Open firmware is discarded at some point
— Devicetree is internalized so the initial devicetree

is discarded
— Grub is discarded once the kernel is up i
INux
= User-space VM management/control is via libvirt
tools

— virsh, virt-install, etc.
Figure 9 Overview of the Linux/KVM environment on Powre systems

= QEMU/KVM is a type 2 hypervisor

= QEMU functions by mapping the guest address
spaceinside of it's space

= QEMU starts with full addressability to the entire
guest

= Once execution passesto SLOF or Grub,

QEMU no longer needs free access into the VM
—We should not trust QEMU

= The interface between the guest VM and QEMU
is PAPR (hcalls, as implemented by KVM
&QEMU)

= QEMU uses a syscall interface to talk to
Linux/KVM

= We propose using the coarse-grained version of
SB++/ACMto protect virtual machines Linux -

Figure 10 QEMU Process and guest system relationship

We studied the Open Firmware boot process and created a bootloader for booting VMs in the
PowerKVM environment. The bootloader is the first step toward creating a SVM. We also
identified steps for deriving a SVM from an existing VM image at rest; experimented with
Buildroot (git://git.buildroot.net/buildroot) and Petitboot (git://ozlabs.org/ jk/petitboot) open
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source tools for creating a bootstrap loader for VM images; and reviewed documentation and
source code on the Open Firmware boot process.

VM Image
PreP boot Boot Root
Partition File System File System
SVM Image
Miniboot Integrity ?_"Z‘;‘é':r Boot Root
Petitboot Tree and Object File System File System
Y files with digital sigxiures Y
plaintext secure objectencrypted
encrypted using
symmetric key

\ J

PreP boot Partition

Figure 11 Conceptual view of SVM

Using the Buildroot tool, a tool to automate the creation of Linux images for embedded systems,
we created our initial bootloader for booting an SVM. This bootloader consisted of custom Linux
kernel with an embedded initramfs containing the Petitboot application, a user level application
bootloader based on kexec. We employed Petitboot to boot the VMs from their image files since
it is the bootloader used to natively boot Linux on Power Systems. We demonstrated that our
custom Linux can boot VM images from the Linux command line using the gemu-system-ppc64
command. We also tested booting the VM image by writing a zImage version of the bootloader
into the VMs PreP boot partition. A zlmage is a compressed kernel image wrapped with
bootstrapping code.

We created a bash script called writeprep.sh. This script writes an ELF file into the VM images
PReP partition by associating a loop back device with the image and using the dd command to
write the ELF file into the image. The script requires the following input parameters: VM image,
bootloader (ELF file), and VM name. The writeprep.sh script uses the zlmage version of our
bootloader as an input parameter.

We reviewed the IEEE Standard for Boot Firmware (1275-1994) and the Standard for Embedded
Power Architecture Platform Requirements (ePAPR) Version 1.1 documentation for information
on device tree format and the client program interface for accessing Open Firmware services.
Additionally, we examined the source code of the Slimline Open Firmware (SLOF,
http://git.gemu.org/SLOF.git) which is an open source implementation of the IEEE 1275-1994
standard.
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4. RESULTS AND DISCUSSION

4.1. MOBILE PLATFORM RESULTS

This project built the components required to realize the architecture illustrated in Figure 1. This
involved working with the previously existing technologies identified in section 3.1. The primary
work involved extensions to OAT, adaptation of the IMA policy and integration with QEMU in a
mobile platform. During the course of this project our objectives were changed based on
technology developments described in section 4.1.4 below.

4.1.1. IMA-APPRAISAL-IMASIG TEMPLATE PATCHES AND POLICIES The
Linux integrity work provided two distinct, but separate integrity models: one “trusted” computing
model, rooted in a hardware TPM, and the second “secure” computing model, rooted in secure
boot. The trusted model records hashes of files in a measurement list, which is anchored in platform
configuration register (PCR) 10 of a hardware TPM (or virtualized TPM for guest virtual
machines).

Prior to our project work was submitted and accepted into the Linux kernel 3.13, that allows
integration of the two models, by creating a new measurement list template. This template adds
the “secure™ computing signatures to the measurement list, so that they too can be securely attested
in the “trusted” computing list.

This project gains the benefit of hardware based attestation and the benefit of signature based
verification, which provides authenticated provenance for all signed files.

4.1.2. OAT ANALYSIS AND INTEGRATION This project developed an extension to
OpenAttestation (OAT) to support the verification based on the new integrated IMA attestation
model (see section 4.1.4).

The existing OAT base validates only the boot aggregate PCR values (PCR 0-7). It has a client
program that runs on the host or VM to be monitored, which signs these PCR values with a TPM
Quote, and forwards the signed values to the OAT server, which stores the reports in a report
database, and can verify and display the reports on an integrity web portal. The database stores a
single “good” value for each PCR, based on the value at client registration, and creates an alert if
a new submitted report has PCR values that are different, or if the TPM signature does not validate.

This project extended the OAT data to include all of the IMA measurements and signatures. A
new verification program was written, which validated all signatures against the corresponding
public keys (collected from the client at registration). Errors were noted if:

0 The overall list did not validate to the TPM Quote

0 A signature did not verify against the indicated key

0 A ssignature verified, but against an untrusted key

o Afile was not signed

These OAT extensions have been demonstrated and tested in a prototype environment.

4.1.3. QEMU INTEGRATION WITH CUSE BASED SWTPM For virtual machines on
QEMU/KVM to take advantage of the Linux integrity model, QEMU has to provide at least a
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software emulation of a per-VM TPM. Our original plan was to integrate our software emulation
of a TPM (swTPM - http://ibmswtpm.sourceforge.net) directly with QEMU as a shared library
(libtpms).

However, the QEMU maintainer has not accepted our submitted patches to do this, but did accept
a simple patch that provides a “passthrough” driver linking a single VM to the native hardware
(via /dev/tpmO).

For now, we have developed a work around which requires no changes to the guest or native
kernels, QEMU, or libtpms. The basic approach is to use the existing “cuse” (character driver in
user space) kernel module in the native kernel, to connect a user space application (“tpm server
cuse™) to virtual devices which appear as /dev/vtpm*. The passthrough driver does accept a
pathname to the host TPM, so we can redirect it to /dev/vtpm™, so long as the cuse driver duplicates
the functionality of the /dev/tpm* device driver.

For full support of all TPM functionality, we add a few ioctls to the cuse driver, so that in the
future the QEMU passthrough driver will be able to support hardware level TPM features, such as
TPM Init, for more complete emulation.

A backend script for virt-manager/libvirt was developed, to startup the cuse drivers for each VM
instance, and to pass the needed passthrough driver command line parameters to QEMU, without
having to modify libvirt for now.

4.1.4. CHANGES TO THE ORIGINAL PLANOAT This work was done with members
of the OpenAttestation community, who completed version 1.7 of OAT (released 3/25/2014)
which includes a framework for OAT verification and reporting of IMA measurements. This
framework provides for the necessary external verification programs,

Originally, we had planned on integrating this support into the latest OAT version 2.1, but the 2.1
design and implementation is so different, that any port from 1.7 to 2.1 will require a significant
effort. Consequently, our work remained on 1.7 for the mobile prototype.

Containers During the course of this project, containers including Docker and Linux containers
(LXC) have become increasingly popular, due to security improvements, most notably the
completion and upstreaming of user namespaces in the Linux Kernel. A separate project at IBM,
which members of this team led, did a detailed security analysis of containers (particularly Docker)
as candidates to replace virtualization as a secure isolation technology. Modern containers,
particularly LXC are a reasonably secure alternative to virtualization. Because containers have
such significantly lower space and performance overhead compared to virtualization, we view
them as a prime alternative for mobile isolation.

This project completed a prototype for IMA measurement and appraisal for LXC containers, with
extensions to OAT to verify the attestations by container. This prototype successfully
demonstrated the ability of the OAT system to verify attestations at all levels, including native,
VM, container, and containers in VMs. The work included patches to IMA to include container
mount point information in every measurement list entry, and modifications to the OAT appraiser
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to verify each container independently. The IMA patches have been posted for review, and we
anticipate they will be accepted.

IMA A more complete IMA policy was developed that guarantees integrity of the entire TCB with
digital signatures, while avoiding the problem of false alarms from changing files. This avoids
having to maintain a database of measurements of files that are read (but not executed) by root
processes.

This new design involves locking of "mutable” TCB files. The TCB was mapped by logging of
IMA-appraisal data. As files were opened, mapped, or executed, we logged details on who made
the request, the owner of the file, and which process was making the request. With this data we
mapped the files that were (and were not) in the TCB. Most of the TCB files (roughly 3000) were
immutable files, such as ELF executables, shared libraries, and interpreted executables, and were
thus easy to lock down with an IMA policy. There were a smaller set (roughly 1000 files), which
were read by root, which were more problematic. Some of these, such as interpreted code being
read into an interpreter could be made immutable. Others need to remain mutable to root, or the
system cannot boot or perform updates.

A patch to IMA was developed and tested to enable IMA to boot in a mode which allows mutable
files to be updated while maintaining trusted appraisal hashes. Then, after the system is booted and
updated, the systemd scripts can "lock™ IMA-appraisal not to allow any further updates to any
appraised files, whether signed or hashed. In addition, this new "locked" mode blocks renaming,
blocks changing the security.ima xattr, blocks unlinking of TCB files, and locks all root owned
directories, so that TCB files cannot be replaced or changed in any way, even by a root privileged
attacker. All of this locking is under IMA policy control.

This design was implemented. The demonstration showed that it successfully boots and updates a
full Fedora 20 system, and then the system can be locked against root attack, without affecting any
user level processes or applications.

4.1.5. STATUS During this portion of the project, we completed and made available the
following:

0 Upstreamed the OAT extensions for IMA and IMA-sig.

0 Upstreamed modifications to the QEMU passthrough driver.

0 Hosting of a tpm server cuse application that became available in distributions such as

Fedora and Redhat Enterprise Linux (RHEL).

o Completed "locking" extensions to IMA.

0 Posted tools for signing .deb adn.rpm packages.

o0 Developed, tested, and posted IMA and OAT extensions for containers.

4.2. SERVER RESULTS
4.2.1. ACM BLUESPEC FPGA MODEL

Isolation This project built a demonstration of our Bluespec approach to ACM. Figure 12, Figure
1, Figure 14 and Figure 15 depict a 4 demonstration of the isolation capabilities of acm . The full
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demonstration of this part of the technology was shown at the public demonstration event
organized by DHS S&T CSD R&D Showcase in December 2014.
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Figure 12 ACM demonstration: step 1 - creation of initial ACM

FPGA implementation of PPC core with Access Control Monitor In paragraph 4.2.1 we
showed how ACM enforces secure process isolation on a Verilog simulator. In this section we will
show how the Verilog models were mapped to our FPGA emulation platform.

Figure 16 shows the process isolation demo code in which the OS tries to branch into the location
owned by a secure application or domain and is stopped by the ACM by redirecting the execution
to an ACM fault handler. Figure 17 shows the process isolation demo code in which one secure
domain tries to access the contents of another secure domain and is denied by the ACM. Once
again, execution control is transferred to an ACM fault handler. These two figures illustrate the
process isolation capability of an ACM enhanced PPC core.

In the next sections we will describe and demonstrate the advanced features of ACM model on
FPGA hardware, including support for hierarchical ACMs and routing of interrupts from various
hierarchies.

Access Control Monitor enforced process hierarchy on FPGA platform In this paragraph we
show how we extended our ACM model and the Power core to support secure process hierarchies.
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Secure process hierarchy is a unique and innovative concept, which we have brought to the secure
processor design.

Hierarchical ACM allows a secure process to create child secure processes with parent secure
process having no access to memory pages owned by child and vice versa. To further illustrate the
advantage of this feature, a Secure Virtual Machine (SVM) could be run on processor with
hierarchical ACMs. This SVM could then run an untrusted Operating System (OS) and several
secure as well as un-secure processes on top of this OS. The hierarchical ACM will dynamically
track pages owned by each process entity at various levels of the software stack and enforce strict
hardware based isolation rules between them. In order to accommodate hierarchical ACMs several
changes had to be made in the processor pipeline.

1. Instruction format: Power architecture has fixed length instructions. The new instructions
added to support ACM now required more than six arguments. We decided to pass these
arguments through General Purpose Registers (GPRs). Seeding specific GPRs with the
right argument thus becomes the part of a software specification. Thus, all ACM
instructions were changed to mnemonic only instructions. A thread stall mechanism had to
be developed so that the execution pipeline could be suspended until all GPRs containing
the ACM instruction arguments could be accessed in order to pass them to the ACM
hardware.

2. ACM request-response interface: To support multiple hierarchies ACM could require
multiple number of cycles to respond to requests, hence an asynchronous interface was

adopted between the processor pipeline and ACM hardware. Making the interface

Pages of
domain 0 Pages of
domain 1
page
20000 age 7 1A =000000000000001¢ Inst= 60000000 Nop
l l (ﬁ:’;’\\ 8 |1A = 0000000000000020 Inst = 60000000 Nop
. > 9 1A= 0000000000000024 Inst= 60000000 Nop
% 10 1A= 0000000000000028 Inst= 3c000002 Addis
11 1A= 000000000000002¢ Inst = 80000000 Nop
12 |A = 0000000000000030 Inst = 3c200002Addis ' = 0%20000
13 1A= 0000000000000034 Inst= 60210000 LogicalType
(0s) . 14 1A = 0000000000000038 Inst= 1c010000 AcmMNewDomain
Program Program fat* a:mTop: nextReq: req#f 5, acm=0, color=0, RegFromQCutside
in domain 0 . . [Transaction: AcmNewDomain [pc=0000Q000_00000038] [r=0000000000020000]
in domain 1 Fat* acmTop: case 6: op=AcmNewDomain (invoke acmlinst)
Raturned: AcmQueued [pe=0000000000000038]
Fat* acmlinst: id=0, curremtColor=0, op=AcmNewDomain, created:new domain=2,
color=2, page= 2 mappedto color=1
Fat* acminst: id=0, currentColor=0, op=AcmMewDomain, Response= AcmQueued

Pages of Pages of
domain 0 domain 1
newDomain request is quened
page 20000 istransferred to Domain 1
for processing by Acm Domain
©2 .
Program Program
in domain 0 in domain 1

Figure 13 ACM demonstration: step 2 - domain D2 requested
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Pages of Pages of
domain 0

15 1A =000000000000003c¢ Inst = 60000000 Nop
16 1A =0000000000000040 Inst= 60000000 Nop
17 IA=0000000000000044 Inst= 60000000 Nop
18 1A =0000000000000048 Inst= 60000000 Nop
19 1A= 000000000000004c Inst= c0000001 AcmResume color=1

20 IA=0000000000000050 Inst= 60000000 Nep
21 1A =0000000000000054 Inst= 60000000 Nop
22 |A=0000000000000058 Inst= 3c000002 Addis

(0S) 23 1A= 000000000000005¢ Inst = 50000000 Nop
24 |A=0000000000000060 Inst= 3c200002 Addis
251A=0000000000000064 Inst= 60210000 LogicalType
Program Program 26 1A= 0000000000000068 Inst= e4010722 AcmSwResp
in domain 0 in domain 1 *at” acmTop: nextReq: reqé#= 7, acm=0, color= 0, RegFromQutside

[Transaction: AcmResume [pc=000000000000004c] [c= 1]

[at* acmTop: case 6: op=AcmResume (invoke acminst)

Returned: AcmSwReq [pc=0000000000010000][op=AcmNewDomain]
[r=0000000000020000, c= 2, d= 2]

Pages of Pages of Pages of [at* acmlinst: id=0, currentColor= 0, op=AcmResume, Response= AcmSwReq

. . Switched Colorto 1
domain 0 domain 1 domain 2 witchec Lolorto

T Joare [fat* acmTop: nextReq: req#= 10, acm=0, color= 1, ReqFromQutside

10000 20060 [Transaction: AcmSwResp
[pc=0000000000000068][op=AcmNewDomain][r=0000000000020000, c= 2, d= 2,
class=131072, key= Q]
[at* acmTop: case 6: op=AcmSwResp (invoke acminst)
Returned: AcmSucc

[pc=0000000000000000]jop=AcmNewDomain][r=0000000000020000, c= 2, d= 2,
Program Program Program

class=131072, key= Q]
in domain 0 indomain1  in domain 2

[Fat* acmlinst: id=0, currentColor= 1, op=AcmSwResp, Response= AcmSucc Switched
Colorto 0

age 20000 is decrypted and
ansferred to Domain 2

Figure 14 ACM demonstration: step 3 domain D3 completed

asynchronous increased the design flexibility but introduced the problem of inability of
ACM to stop execution of instructions which caused an ACM fault. This could be
prevented by suspending the thread for arbitrary amount of period till the ACM responded
but this design choice was dropped as it has a huge penalty on performance. An alternative
approach of ACM responses to be handled as asynchronous interrupts was adopted. ACM
responses were divided into two parts ones causing access fault must be returned in single
cycle and the second ones like creating domains or requesting service of ACM software
processes could take an arbitrary number of cycles. As a result, the multi cycle responses
could be handled by an interrupt mechanism without stalling the thread.

Instruction fetch caused ACM faults: The instruction fetch stage of the processor pipeline
has a buffer to hide the latency of fetching from memory. The fetch stage fills this buffer
based upon an algorithm which minimizes any present or future fetch latencies. All fetch
requests are approved by the ACM before completion. Certain ACM instructions or an
ACM response can cause context switch forcing the program counter to change to a branch
address. The prefetch algorithm cannot predict this and thus fetches the instructions
sequentially until its buffer is flushed. These fetches will be faulted by the ACM as the
ACM expects the next instruction to be fetched from the branch address, thus creating an
infinite loop of context switch and fetch faults. In order to solve this problem, we modified
the pipeline to carry fault tags with instructions that had caused fetch faults and allowed
the ACM to change its context only when the instruction carrying the fault flag arrived at
the execute stage.
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Pages of
domain 1

Pages of
domain 2

Pages of
domain 0

27 |A=000000000000006¢ Inst= 60000000 Nop

28 |A=0000000000000070Inst= 48020002 BranchType br adLr= 20000

page
10000

page
20000

Fat* acmTop: nextReq: req#= 12, acm=0, color= 0, ReqFromQutside
[Transaction: AcmAccess [pc=0000000000020000] [r=0000000000020000][rwx=101]
[at* acminst: id=0, currentColor=0, methodAccessCheck: raddr=020000, page= 2,
rwx=101, mappedColor=2, noPaletteMatch

memfile: [00020000] Rd supplied cache line.

[at* acmTop: nextReq: req#= 12, acm=0, color= 0, ReflectedFrom Below
[Transaction: AcmForceFault [pc=0000000000020000]

Fat* acmTop: case 6: op=AcmForceFault (invoke acminst)

Returned: AcmFail [pc=0000000000000000]
Err{00000000000000000000100000000000] ***ErrorAccessFault

[at* acminst: id=0, currentColor=0, cp=AcmForceFault, Response= AcmpFail Switched
Colorto 0

Program
in domain 0

Program
in domain 1

Program
in domain 2

Figure 15 ACM demonstration: Step 4 - OS attempts invalid access

After making these three architectural changes, we enhanced the ACM model to maintain multiple
hierarchical contexts. All the models were first tested using a Verilog simulator. We then

synthesized these models to run on our FPGA platform.

Msolation Demo 1

//Counter is at 0x10000 followed by table
Set 0x10100

AcmSwResp

0x722 0x20000 0x20000

//OS creates a secure domain D02 and immediately tries to jump into its page, causing an Acm fault

//AcmSw process code
//AcmSw completes establishing secure Domain —5.

Set 0x0
AcmNewAcm 0x0 Ox10000 Ox10000 //First Acm is established 1. Acm simply returns back here
AcmNewDomain 0x20000 0x20000 //0S establishes a new secure domain —— 2. Acm queues the request

(to be processed later by AcmSw)
and returns control

AcmResume 0x1 /105 lets the AcmSw to complete the secure 3. 0S schedules AcmSw process to run
Set 0xb00 /[Entry Point for AcmSwResp and other Traps

Schedule 0xc00 flcode to execute entry from table below +6. Jump to entry 1 into table

//Counter is at 0x100 followed by table

Set Oxc04

Branch 0x20000 //0S attempts to illegally access a secure domain —+ 7. attempt to jump to secure code

Set 0xf00 /fEntry Point for Acm Fault

Branch 0xf00 //Self-loop, stays here once acm-fault occurs— 8. Acm faults the access

Set 0x10000 //AcmSw process code

Schedule 0x10100 flcode to execute entry from table below +4. AcmSw: Jump to entry 1 into table

returns AcmSwResp

Figure 16 Process isolation OS jumps to secure code

Figure 18 shows an illustration of the hierarchy demo. All the code is written in assembly language
segments. First, an ACM data structure is created at level 0 by ACM hardware. This ACM data
structure is then populated with two domains - OS (D00) and ACM software (D01). The OS at
D00 requests the ACM hardware to create two new secure domains. ACM hardware allocates the
two new secure domains (D02 and D03) different colors. To create another hierarchy the OS at
level 0 requests the creation of another ACM at level 1 using the color allocated to one of the
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MNsolation Demo 2
//DO0 creates two secure domains D02 and D03; D02 loads a page from D03, causing an Acm fault

Set 0x0

AcmNewAcm 0x0 0x10000 Ox10000 HFirst Acm is established 1. Acm simply returns back here
AcmNewDomain 0x20000 0x20000 //OS establishes a new secure in D02 2. Acm queues the request
AcmResume ox1 //OS runs the AcmSw to complete creation of D02 3. 0S runs AcmSw to create D02
Set 0xb00 HEntry Point for AcmSwResp and other Traps

Schedule Oxc00 flcode to execute entry from table below ————|7. 14. 0S schedules

f{Counter is at 0x100 followed by table

Set Oxc04

Branch Oxc50 Hentry 1: jump to action 1 8. Jump to OS Action 1

Branch 0xd00 Hfentry 2: jump to action 2 15. Jump to OS Action 2

Set 0xc50 Haction 1

AcmNewDomain 0x30000 0x30000 1/0S establishes a new secure d in DO3 9. OS Action 1: create D03
AcmResume Oox1 //0S runs the AcmSw to complete creation of D03 10. run AcmSW to create D03
Set 0xd00 Haction 2

AcmResume 0x2 QS runs secure domain D02 16. OS Action 2: run domain D02
Set 0xf00 //Acm Fault location

Branch 0xf00 H'self-loop, stays here once acm-fault occurs 18. Acm faults

Set 0x10000 H/AcmSw Entry Point

Schedule 0x10100 ffcode to execute entry from table below 4. 11. AcmSw schedules

HCounter is at 0x10100 followed by table
Set 0x10104

Branch 0x10200 Hentry 1: jump to action 1 5. AcmSw jump to Action 1

Branch 0x10250 Hfentry 2: jump to action 2 12. AcmSw jumto Action 2

Set 0x10200

AcmSwResp 0x722 0x20000 0x20000 6. AcmSw completes creation of D02
Set 0x10250

AcmSwResp 0x733 0x30000 0x30000 Hlaction2: complete D03 creation 13. AcmSw completes creation of D03
Set 0x20000 //Secure Domain D02 code

Load 0x30000 #Tries to read from Secure Domain D03 17. D02 rattempis 1o access D03 space
Branch 0x2000c {self-loop, if above does not fail (just to check)

Figure 17 Process isolation secure domain invalid access

secure domains (D03). The new ACM at level 1 data structure is then created by ACM hardware.
The ACM hardware repeats the operation of populating the new ACM at level 1 data structure
with colors for OS at levell (D10) and ACM software at level 1 (D11). OS at level 1 then requests
creation of a secure domain D12 at levell. We further demonstrate that when secure domain D12
tries to load the contents from a page that belongs to secure domain D02, the ACM hardware dis
allows this load operation by creating an ACM fault and forcing a branch to ACM fault handler at
levelO. This is a policy choice. We made this choice to enable processes at lower level in hierarchy
to kill processes in higher level if a fault was committed against them. The following page explains
the various code segments of the demo and corresponding program ow. The OS code at various
levels as well as the ACM software code uses a simple scheduler to perform multiple tasks. This
scheduler code was described in section 3.2.3 and is used as is.

Hierarchy Demonstration 1

//D0OO0 creates two secure domains D02 and DO03;
/D00 creates new acm D10 using color of DO3;
/D10 creates secure domain D12; D12 tries to load from D02 creating an access fault

Set 0x0

AcmNewAcm 0x10000 0x10000 0x0 0x0 0x0 --> Stepl: OS requests creation of ACMO
AcmNewDomain 0x20000 0x20000 -------------- > Step2: OS requests creation of secure domain D02
AcmResume 0x1 > Step3: OS notifies ACM of scheduling acmSw process
Set OXb00 -=--=mmmmmmmmmmmceeeee > Step8, 14: OS resumes control after acmSw releases
Schedule 0XCO0 ------=-=mmmmmmmmmmmeae > Step9, 15: OS schedules the next process

Set 0xc10
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Branch
Branch

Set

AcmNewDomain

AcmResume

Set
AcmNewAcm
of D03
AcmResume

Set
Branch

Set
Schedule

Set
Branch
Branch

Set
AcmSwResp

Set
AcmSwResp

Set
Schedule

Set
Branch

Set
AcmSwResp

Set
Load
Branch

Set

AcmNewDomain

AcmResume

0XC50 --------=-mmmmmmmmmeeee > Branch address for OS scheduled process

0xd0Q -------=-=-mmmmmmmememem > Branch address for OS scheduled process

0xc50

0x30000 0x30000 -------------- > Stepl0: OS requests creation of secure domain D03
0x1 > Stepll: OS notifies ACM of scheduling acmSw process
0xd00

0x40000 0x40000 0x60000 0x60000 0x3 ----> Stepl6: OS requests creation of ACM1 using color

0X3 ----m-m-mmmmmmem e > Stepl7: OS notifies ACMO of scheduling D03

OXfO0 --------=m=mmmmmmmmme- > Step28: Level0 fault handler when ACM denies D12 to D02 load
0xf00

0x10000 ------ > Step4: PC changes to acmSw address

0x10100 ------ > Step5: acmSw scheduler code branches to addr 10200
0x10110

0x10200 ------ > Step6: acmSw at level 0 runs the first time

0x10250 ------ > Step12: acmSw at level O runs the second time

0x10200

0x7 0x20000 0x20000 0x2 0x2 --> Step7: acmSw finishes creating secure domain D02

0x10250
0x7 0x30000 0x30000 0x3 0x3 --> Stepl3: acmSw finishes creating secure domain D03

0x40000 -----------=-=-=------- > Step21: PC changes to acmSw address at level 1
0x40100 ----------------------- > Step22: acmSw scheduler code branches to addr 40100
0x40110

0x40200 -----------=-=-mommeo- > Step23: acmSw at level 1 runs the first time

0x40200

0x7 0x50000 0x50000 0x2 0x2 ---> Step24: acmSw finishes creating secure domain D12
0x50000

0x20000 ---------=-=-=-=-=----- > Step27: D12 tries to load D02

0x50000 ---------=-=-=-=-=----- > If above load passes loop!

0x60000 -------------=------- > Stepl8: OS at levell gains control

0x50000 0x50000 --------=---- >
Ox1 >

Stepl19: OS levell requests creation of secure domain
Step20: OS notifies ACM1 of scheduling acmSw

Hierarchy Demonstration 2

In the second demo we extend the example in demol by creating two secure domains at level 1
(D12 & D13). We then try to load contents of D13 from D12. The ACM denies this load but this
time it transfers the control to the fault handler lying at level 1 thus illustrating the hierarchy of
privileges brought in by a hierarchical ACM architecture.

//IDOO0 creates two secure domains D02 and DO03;
//D0O0 creates new acm D10 using color of DO3;
//ID10 creates secure domain D12; D12 tries to load from D02 creating an access fault

Set 0x0

AcmNewAcm 0x10000 0x10000 0x0 0x0 0x0 ----> Stepl: OS requests creation of ACMO
AcmNewDomain 0x20000 0x20000 ---------------- > Step2: OS requests creation of secure domain D02
AcmResume 0x1 > Step3: OS notifies ACM of scheduling acmSw process
Set 0xb00 ---------------- > Step8, 14: OS resumes control after acmSw releases
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Schedule
Set
Branch
Branch

Set

AcmNewDomain

AcmResume

Set
AcmNewAcm
of D03
AcmResume

Set
Branch

Set
Schedule

Set
Branch
Branch

Set
AcmSwResp

Set
AcmSwResp

Set
Schedule

Set
Branch
Branch

Set
AcmSwResp

Set
AcmSwResp

Set
Load
Branch

Set

AcmNewDomain

AcmResume

Set
Schedule

Set
Branch
Branch

Set

AcmNewDomain

AcmResume

0xc00 ----------mmmo- > Step9, 15: OS schedules the next process

Oxcl10

0xc50 -------mmmmmmm- > Branch address for OS scheduled process

0xd0Q ---------------- > Branch address for OS scheduled process

0xc50

0x30000 0x30000 ------- > Stepl0: OS requests creation of secure domain D03
OX1 ----mmmmmmmmmmmmeen > Stepll: OS notifies ACM of scheduling acmSw process
0xd00

0x40000 0x40000 0x60000 0x60000 0x3 ----> Stepl6: OS requests creation of ACM1 using color

0x3 > Stepl7: OS notifies ACMO of scheduling D03

0XfOQ ---------mmmmmmmmemem > LevelO fault handler when ACM denies D12 to D02 load
0xf00

0x10000 > Step4: PC changes to acmSw address

0x10100 > Step5: acmSw scheduler code branches to addr 10200
0x10110

0x10200 > Step6: acmSw at level 0 runs the first time

0x10250 > Stepl2: acmSw at level O runs the second time
0x10200

0x7 0x20000 0x20000 0x2 0x2 ------- > Step7: acmSw finishes creating secure domain D02
0x10250

0x7 0x30000 0x30000 0x3 0x3 ------- > Step13: acmSw finishes creating secure domain D03

0x40000 > Step21, 30: PC changes to acmSw address at level 1
0x40100 > Step22, 31: acmSw scheduler code runs

0x40110

0x40200 --------=-=-==-=-m-m-- > Step23: acmSw at level 1 runs the first time

0x40250 --------=-=-=-=nmnmmm-- > Step32: acmSw at level 1 runs the second time
0x40200

0x7 0x50000 0x50000 0x2 0x2 ----> Step24: acmSw finishes creating secure domain D12
0x40250

0x7 0x70000 0x70000 0x3 0x3 ----> Step33: acmSw finishes creating secure domain D13
0x50000

0x70000 > Step37: D12 tries to load D13

0x50000 > If above load passes loop!

0x60000 > Stepl8: OS at levell gains control

0x50000 0x50000 ----------------- >  Stepl9: OS levell requests creation of secure domain
0x1 > Step20: OS notifies ACM1 of scheduling acmSw
0x60b00

0x60c00 >  Step 25, 34: OS levell regains control after acmSw
0x60c10

0x60c50 >  Step 26: OS levell schedules first process

0x60d00 >  Step 35: OS levell schedules second process
0x60c50 >  Step 27: OS levell scheduled process runs

0x70000 0x70000 -------=-=====------- > Step 28: OS levell process requests creation of domain D13
0x1 > Step 29: OS levell notifies ACM1 of scheduling acmSw
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Set 0x60d00

AcmResume 0x2 > Step 36: OS levell notifies ACM1 of scheduling domain D12
Set 0x60f00 > Step 38: Levell fault handler when ACM denies D12 to D13 load
Branch 0x60f00

Hierarchy Demo

ACMO is created at levelD

ACMO creates two domains
* Domain D0O: OS
+ Domain D01: acm software

Two secure domains are created

under ACMO

* DO02: This domain is assigned
coler 2 by the ACMO

* DO03: This domain is assigned
color 3 by ACMO

D03 is converted into a new ACM at
level1
= ACM1: ACM at levell

* ACM1 creates two domains
* Domain 10: 0S
» Domain 11: acm software

* A secure domain is created under
ACM1
* D12: This domain is assigned
color 2 by ACM1

» Code residing in D12 attempts to load
data from D02 causing an access fault.

Figure 18 Process hierarchy illustration

Both code pieces shown in Demo 1 and Demo 2 are written in plain text format. A parser coded
in Haskell takes the text file and generates assembly code. This assembly code is then compiled to
generate a Hex file. The Hex file is then used to seed the memory model for Verilog simulations.
The same Hex file is also used to create a binary file. The binary file is loaded using a backdoor
DDR interface into the memory of the processor implemented on the FPGA platform. While the
Verilog simulator gives a detailed trace as each instruction is executed, the FPGA system has a
separate debug interface which lets the user read the contents of any register or memory location
after execution of one or more instructions. We thus verified the concept of hierarchical ACM
using the two simulations as well as the hardware platform. In the next section we will describe
and demonstrate another unique feature of our secure processor architecture | sharing. This feature
allows sharing of memory pages between two or more secure processes. This property will be
demonstrated in both simulation and in hardware on our FPGA platform.

Demonstration of Access Control Monitor enforced sharing of memory pages on FPGA
platform In previous paragraphs we described and demonstrated ACM enforced secure process
hierarchy on the FPGA platform. We now describe how our ACM model and the Power core were
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extended to support secure sharing of memory pages. Like secure process hierarchy, secure sharing
of memory pages is a unique and innovative concept, which we have introduced to the secure
processor design. Secure sharing allows a secure process to share its selectively chosen memory
pages with another secure process. For example if a secure process needs to send data to another
secure process for further computation on the data, it can now do so by sharing the memory page
containing this data with another secure process. The ACM hardware will ensure that the secure
processes with the right key will be the only processes that will have access to the shared pages.
The ACM also offers further granularity with read only, write only, execute only or any
combinations of access privileges for sharing of memory pages between processes. In order to
enhance the ACM integrated Power core to allow hardware enforced secure sharing, many
enhancements were made to the decode and execute pipeline.

Two new instructions were added with the following semantics:

1. Instruction : AcmNewShare
Usage : AcmNewShare (GPRO0), (GPR1)

GPRO : Effective address of the shared page
GPRL1 : Key associated with sharing

Function:  Create a shared page
It can be issued by the secure domain owning the page
GPRO contains the effective address of the page
GPRL1 contains the identifying key

AcmRequest arguments :
Opcode : AcmNewShare
Program Counter : Program counter address
Argument List [0] : (GPRO) = Effective address of shared page
Argument List [1] : (GPR1) = sharing key

AcmResponse arguments :
Opcode : AcmSucc, AcmFail
Program Counter : Base effective address of next instruction
Argument List[0] : AcmNewShare (reflected request)

2. Instruction : AcmAddShare
Usage : AcmAddShare (GPRO0),(GPR1)
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GPRO : Effective address of the shared page
GPRL1 : Key associated with sharing

Function:  Request the permission to access a shared page.
It can only be issued by the secure domain requesting
access to a page shared by another secure domain.
GPRO contains the effective address of the page
GPRL1 contains the identifying key
AcmRequest arguments :

Opcode : AcmAddShare

Program Counter : Current PC address

Argument List[0] : (GPRO) = Effective address of shared page
Argument List[1] : (GPR1) = sharing key

AcmResponse arguments :

Opcode : AcmSucc, AcmFail

Program Counter : Base effective address of next instruction
Argument List[0] : AcmAddShare (reflected request)

The general principle of operation is to first create secure domains. One of the secure domains then
requests from the operating system a new page. On the FPGA platform model it then notifies the
operating system that it would like to share this page with another process and associates a key
with it using the instruction AcmNewShare. This instruction is trapped by the ACM hardware and
an entry is made in its internal table for process versus page ownership. Any other process with
the right key can request access to the page from the OS by using the command AcmAddShare.
The ACM hardware traps this instruction and matches the key. If the match occurs, the ACM
allows the program to proceed, if it fails the contents of the Program counter are modified to point
to the fault location. There is no mechanism explicitly built in hardware for the sharing processes
to exchange the keys. It is assumed that conventional methods of symmetric key encapsulation
with public key cryptography will be used to perform the key exchange. The following two demos
illustrate the basic working principle. The first demo shows how two secure domains can share a
page. The second demo extends beyond the first demo where the OS tries to access the shared page
between two secure domains and the access is denied.

Sharing Demo 1

/I Notation: Dij refers to j-th domain at the i-th level
/I Thus, DOO = OS at level 0, D01 = AcmSw at level 0, D02, D03,... are other secure domains at level 0

/l Thus, D10 = OS at level 1, D11 = AcmSw at level 1, D12, D13,... are other secure domains at level 1 and so on
/I Sharing Demo 1

// DOO creates two secure domains D02 and D03; when it runs D02, D02 shares a page with D03
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Set
AcmNewAcm
AcmNewDomain
AcmResume
Set

Schedule

Set

Branch
Branch
Branch
Branch
Branch

Set
AcmNewDomain
AcmResume
Set
AcmResume
Set 0xd50
AcmMap
AcmResume
Set
AcmResume
Set 0xe50
AcmResume

Set

Branch

Set
Schedule
Set

Branch
Branch
Branch

Set
AcmSwResp

Set
AcmSwResp

Set
AcmSwResp

Set
AcmNewShare

Set

Schedule

Set

Branch
Branch

Set
AcmAddShare

Set
Load
Branch

Set
AcmAddShare

Set
Load
Branch

0x0

0x10000 0x10000 0x0 0x0 0x0 // Stepl: First Acm is established

0x20000 0x20000
Ox1

0xb00

0xc00

0xcl10

0xc50

0xd00

0xd50

0xe00

0xe50

0xc50

0x30000 0x30000
Ox1

0xd00

0x2

0x40000 0x40000 0x4
Ox1

0xe00

0x3

0x3

0xf00

0xf00

0x10000
0x10100
0x10110

0x10200

0x10250
0x10300
0x10200

/I Step 2: OS establishes a new secure domain D02

/I Step 3: OS runs the AcmSw to complete creation of D02
/I OS trap location (in particular, AcmSwResp comes here)
/I Step 8, 15, 19, 26, 31: Scheduler for system handler

/I Step 9: return after first acmSwResp

/I Step 16: return after second acmSwResp
/I Step 20: return after newShare

/I Step 26: return after acmMap

/I Step 32: return after addShare

I/l Step 10: OS establishes a new secure domain D03
// Step 11: OS runs the AcmSw to complete creation of D03

/I Step 17: OS runs secure domain D02 at 0x20000

/I Step 21: OS notifies ACM of mapping new page
/I Step 22: OS runs acmSw

/[Step 27: OS runs secure domain D03 at 0x30000

/I Step 33: OS maps allocates page to DO3 also,

/I runs secure domain D03 at 0x30000

/I Acm Fault location

/I Step 37: self-loop, stays here once acm-fault occurs

/I Steps 4, 12, 23: Scheduler for acmSw
/I Step 5: creation of D02

/I Step 13: creation of D03
/I Step 24: acm map for page share

0x10000002 0x20000 0x20000 0x2 Ox2 // Step 6: new domain D02 created by acmSw,

0x10250

/I control goes back to OS 0xb00

0x10000002 0x30000 0x30000 0x3 0x3 // Step 14: new domain D03 created by acmSw,

0x10300

/I control goes back to OS 0xb00

0x10000006 0x40000 0x40000 Ox4 // Step 25: acm map completed by acmSw,

/I control goes back to OS 0xb00

0x20000 // Secure Domain D02 code
0x40000 0x1729 // Step 18: Secure domain requests new page for sharing,

0x30000
0x30100
0x30110
0x30200
0x30234
0x30200

/I control goes back to OS
/I Secure domain D03 code
/I Step 28, 34: Scheduler for secure domain

/I Step 29: Secure domain code for requesting shared page

/I Step 35: Secure domain code to attempt access to shared page

0x40000 0x1729 // Step 30: Domain D03 requests shared page access

0x30234
0x40000
0x30240

0x30200

/I control goes back to OS 0xb00

/I Step 36: Tries to read from Secure Domain D02
/I Step 37: self-loop if above load is successful

0x40000 0x1729 // Step 30: Domain D03 requests shared page access

0x30234
0x40000
0x30240

/I control goes back to OS 0xb00

/I Step 36: Tries to read from Secure Domain D02
/I Step 37: self-loop if above load is successful

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

31



Sharing Demo 2

/I Notation: Dij refers to j-th domain at the i-th level

/I Thus, DOO = OS at level 0, DO1 = AcmSw at level 0, D02, D03,... are other secure domains at level O

/l Thus, D10 = OS atlevel 1, D11 = AcmSw at level 1, D12, D13,... are other secure domains at level 1 and so on
/I Sharing Demo 2

// DOO creates two secure domains D02 and D03; D02, D03 share a page, OS tries to access the page.

Set
AcmNewAcm

AcmNewDomain

AcmResume

Set

Schedule

Set

Branch
Branch
Branch
Branch
Branch

Set

AcmNewDomain

AcmResume

Set
AcmResume

Set
AcmMap
AcmResume

Set
AcmResume

Set
Load

Set
Branch

Set
Schedule

Set

Branch
Branch
Branch

Set
AcmSwResp

Set
AcmSwResp

Set
AcmSwResp
0xb00

0x0
0x10000 0x10000 0x0 0x0 0x0 // Step 1: First Acm is established
0x20000 0x20000 /I Step 2: OS establishes a new secure domain D02
0x1 /I Step 3: OS runs the AcmSw to complete creation of D02
0xb00 I/l Step 6, 13, 18, 25, 31: OS trap location
(in particular, AcmSwResp comes here)
0xc00 /I Insert here OS scheduler code to jump to schedule at Oxc00
0xc10
0xc50 /I Step 7: return after DO2 creation
0xd00 /I Step 14: return after DO3 creation
0xd50 /I Step 19: return after new page for sharing request
0xe00 /I Step 26: return to OS after map completion
0xe50 /I Step 32: return to OS after add share by D03
0xc50
0x30000 0x30000 /I Step 8: OS establishes a new secure domain D03
0x1 /I Step 9: OS runs the AcmSw to complete creation of D03
0xd00
0x2 /I Step 15: OS runs secure domain D02 at 0x20000
0xd50
0x40000 0x40000 0x4 /I Step 20: OS maps new page
0x1 /I Step 21: OS runs acmSw at 0x10000
0xe00
0x3 /] Step 27: OS runs secure domain D03 at 0x30000
0xe50
0x40000 /I Step 33: OS tries to read the shared page between D02 and D03
0xf00 /I Acm Fault location
0xf00 /I Step 34: self-loop, stays here once acm-fault occurs
0x10000
0x10100 /I Step 4, 10, 22, acmSw location
0x10110
0x10200 /I Step 5: acmSw creates D02
0x10250 /I Step 11: acmSw creates D03
0x10300 /I Step 23: acmSw to complete new page share
0x10200

0x10000002 0x20000 0x20000 0x2 0x2 // Step 6: D02 created, control returns to OS at 0xb00

0x10250
0x10000002 0x30000 0x30000 0x3 0x3 // Step 12: D03 created, control returns to OS at 0xb00

0x10300
0x10000006 0x40000 0x40000 0x4 // Step 24: page mapping completed by acmSw, return to OS at
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Set

0x20000

/I Secure Domain D02 code

AcmNewShare  0x40000 0x1729 /I Step 17: request for new page share by D02, return to OS at 0xb00
Set 0x30000 /I Secure domain D03 code

Schedule 0x30100 /I Step 28: Scheduler for secure domain

Set 0x30110

Branch 0x30200 /I Step 29: Secure domain code

Branch 0x30234

Set 0x30200

AcmAddShare  0x40000 0x1729 /I Step 30: Request shared page access, control returns to OS at 0xb00
Set 0x30234

Load 0x40000 /I Tries to read from Secure Domain D02

Branch 0x30240 /I self-loop

Both code pieces shown in Demo 1 and Demo 2 are written in plain text format. A parser coded
in Haskell takes the text file and generates assembly code. This assembly code is then compiled to
generate a Hex file. The Hex file is then used to seed the memory model for Verilog simulations.
The same Hex file is also used to create a binary file. The binary file is loaded using a backdoor
DDR interface into the memory of the processor implemented on the FPGA platform. While the
Verilog simulator gives a detailed trace as each instruction is executed, the FPGA system has a
separate debug interface, which lets the user read the contents of any register or memory location
after execution of one or more instructions. We thus verified the concept of sharing using the
simulation and on the hardware platform.

Booting Linux on Access Control Monitor Integrated Power core on the FPGA platform
Eight new instructions have been added to the Power ISA in our prototype and many new service
addresses to handle context switch and ACM faults. In order to enhance the adaptability of this
new hardware we are moving from coding in assembly language to writing code in any higher
level language with the operating system understanding and utilizing the new secure processor.
Along this direction we have started booting the Linux kernel on the ACM integrated Power core.
After running 200, 000 instructions in the Linux kernel we discovered that the core was hanging.
Further debug led to the discovery of a Bluespec-Xilinx design bug in pre-fetch buffers. These
buffers were implemented using Block-RAM based FIFOs, the threshold signals of FIFO - full
and empty were incorrectly generated thus inserting invalid instructions in the pipeline
occasionally. The library element of the Bluespec was changed to generate FIFOs using distributed
RAMSs with correct threshold detectors. This problem is now fixed. A TCL based interface was
also created for the Verilog simulation environment. This interface is identical to the interface
being used on the FPGA platform thus identical traces from both FPGA hardware and Verilog
simulation can now be generated and compared for hardware debug.

4.2.2. MODIFYING THE MODEL OF AN EXISTING POWER PROCESSOR

Developing tools for building SVMs: The initial SVM bootloader consisted of a compressed
kernel image wrapped with some bootstrapping code. The compressed kernel image contains a
Linux kernel (version 3.17) embedded with the Petitboot application; we called this component
Linux-Petitboot. The Petitboot application is a user-space application that loads and executes the
VMs kernel image using kexec. After the bootstrapping code loads and decompresses the kernel
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image, Linux-Petitboot interacts with the Slimline Open Firmware (SLOF) using a callback pointer
to retrieve information about devices available on the system in our case the VM. Due to security
concerns, the SVM must enter secure mode (i.e., invoke the esm ucall) early in the bootstrapping
code before transitioning to Linux-Petitboot. Consequently, this changes the interaction between
Linux-Petitboot and SLOF to one that involves data transfer between memory regions with
different security labels. Our ACM memory protection is designed to deny such data transfer, and
thus this interaction requires special handing, such as wrapping calls to SLOF, to permit read/write
from memory regions with different labels.

We addressed this interaction issue by using the flattened device calling convention when
entering/calling Linux-Petitboot instead of the Open Firmware callback pointer. We designed and
implemented code to build the flattened device tree data structure, set up the pre-boot runtime
environment, and invoke Linux-Petitboot using this data structure. Building the flattened device
required walking the device tree information maintained by SLOF. In the bootstrapping code, we
added code to call SLOF functions to retrieve device information and build the flattened device
tree data structure, which consists of nodes having property name/value pairs describing properties
of the device. At a high level, the flattened device tree contains four sections: header, memory
reserve map, string structure, and device structure. The header includes magic number, and offset
and length information of the other sections. The memory reserve map section declares memory
ranges that Linux should not allocate. An example is the memory region of the RTAS component.
The string section has the list of strings corresponding to property names in the tree. The device
section contains the tree nodes representing the devices on the system.

Setting up the pre-boot runtime environment required performing two tasks. The first task included
instantiating the RTAS object and updating its RTAS property values specifying memory location
and size in the device tree. The second task involved updating the /chosen and /vga nodes in the
device tree with environment information required by Linux. For example, Linux requires the
absolute path to the console to be specified in the /chosen/linux, stdout-path property.

We instrumented the bootloader with calls (ultracalls) to the ACM. After invoking the esm
ultracall, which sets up the secure executing environment, the bootloader invokes the memory
permission ultracall and then transfers control to the Petitboot kernel by executing its entry point.
Changing the memory permission of unprotected memory segments prevents future running code
in the SVM from reusing these memory segments (address space) for disclosing or leaking
sensitivity information. We also automated the creation of SVMs from normal VMs. We designed
and wrote two bash scripts to derive SVMs from VMs defined in the PowerLinux Qemu/KVM
environment. The first script creates the SVM xml configuration file and image file based on an
existing VM configuration in the system. The SVM image file is a clone of the original VM, except
for the PreP partition in the original image file. The SVM image contains a PreP boot, boot and
root partition with the appropriate sizes and attributes, such as PreP boot, boot, and lvm. The PreP
partition is created with a size of 32,768 KB, which is large enough to hold the secure bootstrap
loader which is 17 MB if embedded with a gzip compressed Petitboot Linux kernel image. The
first script uses the virt-clone Linux command line tool to generate unique values in the SVM
configuration file for MAC address and VM uuid. The SVM image filename is created by
concatenating the original VM image filename with the string svm. The second script writes data
into the SVM image disk. It copies the boot and root partitions from the original VM image into
the SVM image file. It then writes the secure bootstrap loader into the SVM PreP boot partition.
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The second script uses Linux utility tools losetup and kpartx to loop mount the original VM and
SVM image partitions.

The tooling successfully creates an SVM which the prototype ACM firmware successfully boots.

Modifying the P8 architecture We modified the P8 architecture as described in our draft
ASPLOS paper in Appendix A. This draft paper contains a detailed but high level description of
the architecture so we will not reproduce it here.

Design Requirements for ACM firmware The ACM firmware will operate in the following
environment:
e The ACM firmware only receives control as a result of an interrupt or from HostBoot on
power up.
0 In our simulated environment (Mambo) the bare bones ACM firmware receives
control directly
e The interrupts that the ACM firmware receives can be broadly divided into three classes
o0 Ultravisor mode (or ACM firmware) directed interrupts
0 Hypervisor directed interrupts
0 Supervisor directed interrupts
e ACM firmware functions are time limited. No function should take longer than the
hypervisor interrupt time.
0 There will be no idle loop in the ACM firmware
o Some functions cannot be completed in one time quantum. They will have to be
implemented so that they can be suspended and resumed.
e The ACM firmware must be thread safe.
o0 The ACM firmware operates on the thread of the process that was active when it
received control. It must respect all time limitations. Consequently, there will be variable time
periods available for its work.

Figure 19 identifies the major functions of the ACM firmware that we have developed for our
prototype. At the bottom of the picture is a box titled Ultravisor support routines this refers to all
of the support functions that are being written to support the main functions of ACM firmware.
The main ACM firmware functions in the prototype are defined as follows:

e Initialization: This code initializes the ACM firmware

e Ucall: Handles ACM firmware calls

e SLOF Support: Support for Simline Open Firmware (SLOF)

e SEID table management: Management of the SEID table
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Functional overview of ultravisor

Initialization SEID Table Ultravisor Page Table
Management Control Management
(translation
U-call H-call o)
(S)I(sclallld-> u‘l‘téasvl\i;"']r) (syscall -> ultravisor) RTAS
= :u::tion Support
Cryptographic
Support

Utilized by SVM Boot

SLOF
Support

Ultravisor support routines

Figure 19 Functional overview of ACM firmware

H-call Support: for hypervisor calls (wrappers) made by SVMs.

Cryptographic Support: Cryptographic routines in use by the ACM firmware.
Ultravisor Control Interrupt Processing: Ultravisor control interrupt processing. This
interrupt occurs when the systems touches a facility being monitored by the ACM
firmware.

RTAS: Real time abstractions services (RTAS) support.

Page Table Management: Page table support. The ACM firmware monitors all page
tables in the system

Ultravisor support routines: Support routines required for ACM firmware.

For a full product version of ACM firmware on an IBM Power server additional support might be
required such as:

Partition Migration and/or Hibernation: Support to allow migration or hibernation of
SVMs.

MM 1/O Support: Support for memory mapped 1/0.

X1V Support: XIV table support.

Window Context Management: Window context management support.

ACM firmware The ACM firmware contains the nine functions identified in Figure 20. Many of
the functions of the ACM firmware involve multiple interrupts. During the power on sequence,
the ACM firmware takes control of the system and then passes control to the next executing
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Functional overview of barebones ultravisor

U-call H-call

(syscall -> ultravisor) (syscall -> ultravisor)
Includes “ESM”

function

Utilized by SVM Boot

Ultravisor support routines

Figure 20 Components required for bare bones ACM firmware

component usually a hypervisor or an OS (for a guest VM). During the initial tests of ACM
firmware, the hypervisor and the VMs it ran did not exploit any features of the ACM firmware
(i.e., no SVMs were executing). The objective of this test was to demonstrate that the ACM
firmware function are transparent to any system that is not exploiting the ACM/SB++
functionality. As previously stated, the ACM hardware does not include any timer that passes
control to the ACM firmware. Consequently, the ACM firmware only responds to interrupts.
Within these criteria, the full implementation of ACM firmware has to perform all of the functions
listed in previously. Whenever Ultravisor mode is active, even when there is no ESM instruction
or Ultravisor call, ACM firmware must do the following:

Handle SEID faults because the SEID table is filled in on demand

Handle Control calls

Perform allowable operations on restricted registers.

Watch SDR1 and RMOR, LPIDR and PIDR (Power architecture registers)
Manage writes to context windows (SEID fault)

Manage page tables (Ucalls)

Monitor XIVE tables (SEID fault)

Our hardware architecture supported the development of type-1 ACM firmware. Consequently,
the ACM firmware was developed incrementally. The green boxes in Figure 20 indicate the
components we developed to complete our test. The seven dark green boxes have to be fully
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implemented, the lighter green boxes are only implemented to the extent required by the four dark
green boxes to successfully boot and run an SVM. The components that were fully or partially
implemented are:
e Initialization: This code initializes the ACM firmware.
e U-call: Support for ultravisor calls. A full system will have more than we implemented.
e SLOF support: Support for SLOF.
e SEID table management: Management of the SEID table.

H-call Wrappers for the H-calls used by the virtual machines we booted. A full system

has to support all 118.

e Cryptographic: Cryptographic routines and TPM functions used by ACM firmware.

e Ultravisor Control Interrupt Processing: Ultravisor control interrupt processing. This
interrupt occurs when the systems touches a facility being monitored by the ACM
firmware.

e RTAS: Support for RTAS.

e Page Table Management: Page table support. The ACM firmware monitors all page
tables in the system

e Ultravisor Support Routines: Common functions that can be shared by multiple ACM
firmware components.

Booting an SVM with Bare Bones ACM firmware The prototype ACM firmware supporting an
SVM contains the components shown inside the green boxes identified in Figure 20. In order to
boot an SVM the ACM firmware must decrypt the secure header to obtain a symmetric key, an
integrity root, the address range that is cryptographically protected (note that the entire address
range that is integrity-protected). The ACM firmware then verifies the integrity of the initial code,
assigns to the SVM an SEID (color) and a runtime key and returns to the SVM in secure mode at
the start address for secure execution. To support this process we had to develop appropriate
"wrappers" to facilitate data transfer to/from protected to unprotected memory space.

We tested our ACM firmware support for SVMs by booting Linux/KVM (as a hypervisor) on our
hardware model, booting a virtual machine on top of Linux/KVM hypervisor. We booted and ran
an SVM on top of the ACM firmware) (including virtual 1/0). By booting Linux/KVM and
multiple virtual machine we have demonstrated the feasibility of this approach to security. It is
important to note that the simulator we are using is CPU focused and consequently does not contain
an architecturally accurate simulation of the 1/0 subsystem. Linux/KVVM boots off a disk, but the
disk is provided by the simulator without simulating all of the actual hardware for 1/0 that exist in
our current (or future) systems.

4.2.3. PERFORMANCE OF BARE BONES ACM FIRMWARE

Based on our initial measurements the overhead for having the current ACM firmware manage
page tables is 25% - 33%. This measurement was made by counting the number of instructions it
takes to boot to the command prompt using the simulator on an unmodified processor and
comparing that to the number of instructions it takes to boot to the command prompt on top of the
bare-bones ACM firmware. This overhead is significant. The largest component of the overhead
appears to be page table management. For every page table update Linux/KVM touches the page
tables three time. First to get the lock, next to update the entry, and finally to release the lock. We
expect that paravirtualization would reduce this overhead by about one-third.
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Kernel same-page merging (KSM) is a facility in the Linux/KVM hypervisor that allows multiple
virtual machines to share the same page of the kernel (write only). Our testing showed that this
facility adds excessive cryptographic overhead when booting an SVM. Since KSM did not add
value to our proof of concept, we disabled it in all SVMs we booted. It should not apply to an SVM
because our cryptographic support encrypts each page uniquely so the KVM daemon will never
find a match between two SVMs.

4.3. CUSTOMER NEEDS ADDRESSED

Our high-level objective is to build systems that can protect sensitive software and data from other
software, including systems software and other applications, as well as rogue administrators. This
objective is even more timely given that the frequency and impact of breeches and the consequent
loss of sensitive data is increasing, despite increased investments in cybersecurity. It can be
observed that it very hard to verify the provenance, correctness and malware-free operation of all
software components like hypervisors, operating systems, privileged software, etc. Security
concerns are amplified by the increased popularity of multitenant and cloud computing models,
which introduce multiple owners and system software components. Therefore, our key thesis is
that building systems to protect sensitive software and data requires hardware enabled security To
facilitate achieving this objective, we need to minimize the hardware and software that needs to
be trusted — also known as the Trusted Computing Base (TCB).

4.4. COMPARISON WITH COMPETITION

The most relevant related work is Intel Software Guard Extensions (SGX), which was announced
after the start of this project. SGX is motivated by similar requirements for protecting the integrity
and confidentiality of sensitive code and data. It employs a similar approach for creating
“enclaves” protected by processor extensions. We note that Intel SGX publications refer to one of
our IBM Research papers on SecureBlue++.

In terms of comparison, SGX appears to be more focused on protecting sensitive parts of an
application - what we refer to as “fine grain” protection. This approach requires changes to
application source code. Our initial focus is on “coarse grain”, end-to-end protection for entire
Virtual Machines (or containers) — protection that is more applicable to cloud workloads and goes
beyond what is currently possible with SGX. By end-to-end protection of VMs we mean that our
approach safeguards SVMs across their life-cycle and, for example, allows for building,
distributing and running SVMs with built-in secrets. Our approach also aims to be largely
transparent to existing software — i.e. not requiring changes to application source code.

4.5. TECHNOLOGY TRANSITION AND TRANSFER

During this project we engaged with IBM product partners in the Systems Group, which is now
the successor to the previously named Systems and Technology Group (STG), in order to pursue
the commercialization of a subset or a derivative of the proposed architecture developed under
this project. Our technical discussions with the IBM Systems Group have focused on secure
processor architecture, design and prototyping and span both hardware, targeted for future
generation processors, and modifications to the associated software stacks for firmware
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(including the ACM firmware), hypervisor, guest OS and applications that take advantage of the
hardware/processor enhancements.

As part of our technology transfer activities we developed the functionality of the simulators of
our processor core extensions that are aligned with existing commercial POWER processor
models, along with prototypes of the ACM firmware. We also generated a detailed analysis of
the hardware and software overhead of our architecture on a future generation Power processor
in order to provide a more accurate estimate of all the development requirements for our IBM
commercialization partners.

A derivative of the ACM hardware extensions and associated ACM firmware developed under
this project are planned for release in a next generation Power processor. The planned feature
was referred to as “trusted execution enforced by hardware” in a recent presentation by IBM,
titled “POWERQ9: Processor for the Cognitive Era”, at the Hot Chips Conference [7]. The relevant
slides from this presentation are extracted and included in Appendix A.
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5. CONCLUSION

End-to-end security and trust is a critical part for sensitive workloads that may be deployed across
a combination of cloud, enterprise servers, mobile or IoT platforms. At the start of this project
there was no proof that VMs could be isolated in the way that was proposed. The prototypes
constructed during this project proved that hardware extensions, along with a type-1 ACM
firmware can be developed in a way that is transparent to unmodified VMs while supporting
SVMs. The “hardware enforced trusted execution” announced for POWERS9 [7] is a derivative of
the architecture and benefits from lessons learned from this project. If container technology
evolves to exploit virtualization hardware, as is projected by some, containers will also be able to
exploit this architecture and its derivatives. Further research can and will be done in this area; most
likely driven by customer requirements and the evolution of container technologies and offerings.

For low-end and mobile clients we demonstrated that it is possible to build secure devices. This is
an area that TCG is also focused on. We used a TPM chip to illustrate the concept for sensors and
actuators, without employing the function of the TPM. TCG is developing a specification for RTM
that will help 10T developers integrate trusted computing into their designs. We contributed to that
standardization work as part of this project. For mobile platforms we developed and prototyped an
architecture that supports separation between different personalities on the same platform,
safeguarding enterprise from personal data and applications in a bi-directional manner. The
technologies that were developed verified the integrity and trustworthiness of different virtual
machines, which correspond to different personalities

Combining the different parts of our work produces a novel, realistic and feasible architecture for
malware defense and end-to-end trust.
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Embedded Linux Integrity
David Safford
6/30/2013

Abstract

Lirux is in widespread use in embedded devices,
but these devices typically lack critical security
features found in higher-end Linux systems. They
typically do not have any way to validate their
firmware, they do not have hardware roots of
trust for trusted or secure boot, they do not have
provisions for physical presence, to protect
firmware from remote modification, and they do
not have secure update. Vendors claim that these
features are either too large, or too expensive to
fit in their embedded devices.

This paper surmmarizes the recent widespread
vulnerabilities and compromises of embedded
devices, and shows how the given security
features would defeat such attacks. It relates the
concepts to the NIST SP800 guidelines for BIOS
measurement and protection, and to the ongoing
work on Linux secure boot for higher end
devices. It looks at four typical embedded
devices, shows how all of these features can be
added at zero cost.

Introduction

Linux runs on an incredible range of devices
from very small embedded devices, to the largest
supercomputers. The devices cover a staggering
12 orders of magnitude in memory size, and 7
orders of magnitude in cost.

Embedded Linux devices typically consist of just
three small chips — an SoC, flash, and RAM. The
SoC (System on a Chip) normally includes a 32

bit ARM or MIPS CPU, along with flash, RAM,
USB, ethernet and wireless interfaces. The flash
is typically a 4 or 8MB SPI device, and the RAM
is usually 32 — 64 MB. The firmware on these
small devices includes a Linux kernel, stripped
and compressed to under 1MB, and a squashed
root filesystem under 3 MB. There is no
initramfs.

For this class of embedded devices we are mainly
interested in four foundational integrity features:

» initial firmware validation
* run-time firmware protection
+ firmware update validation
+ boot time integrity validation

While higher-end Linux devices in the mobile,
PC, and server categories have one or more of
these features, typical embedded devices have
none of them. Table 1 shows some categories of
Linux devices, and their typical integrity features.

Cost

Category

Size Typical Integrity
Features

Server $10K+ PB |4768 Crypto card
Trusted and Secure
Boot

PC 31K TB |TPM Trusted and
Secure Boot (Win3)

mobile %500 GB |Restricted Boot

embedded |$50 MB | Nothing

Sensor 310 KB |Nothing

Table 1: Linux Spectrum

This material is based on research sponsored by the Department of Homeland Security (ODHS) Science and
Technology Directorate, Homeland Security Advanced Research Projects Agency, Cyber Security Division
(DHS S&T/HSARPA/CSD), BAA 11-02 and Air Force Research Laboratory, Information Directorate under
agreement number FA8750-12-2-0243. The U.S. Govermnment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Department of Homeland
Security, Air Force Research Laboratory or the U.S. Government.
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For this paper, we selected four example
embedded linux devices as representative:
Linksys WRT54G, TP-Link MR3020, D-Link
DIR-505, and the Pogoplug model 2.

The WRT54g was the first wireless access point
to run embedded Linux. Linksys published all the
GPL source code to this device, and today
virtually all wireless devices use a derivative of
this original embedded Linux. Openwrt is a
community supported derivative that runs on
most past and current wireless devices.

The TP-link and D-link are small, travel-sized
versions with significant additional features,
including support for USB attached network
storage and media serving. Figure 1 shows
images for these four selected devices.

Figure 1: Example Devices

Embedded Linux devices like these four have
been extensively compromised recently. In 2012
4.5 Million home routers were compromised in
Brazil [1]. In this one attack, many different
Broadcom based devices, from multiple vendors
and across four ISPs were compromised,
redirecting all home client devices to malicious
DNS servers.  While the wvulnerability was
present only on the internal networks, the basic
exploit was so simple that using CSRF (cross site
request forgery) to “bounce™ the attack off local

browsers was quite effective. The basic (trivial)
exploit to get a plaintext copy of the admin
password was:

get.pl http://192.168.1.1/password.cgi

In 2013, the D-Link DIR-645 home router was
similarly found to give away the admin password
in a trivial exploit [2]:

curl -d SERVICES=DEVICE.ACCOUNT
http://<device ip>/getcfg.php

In 2013, five new vulnerabilities in Linksys
routers were discovered[3]. The WRT54GL (one
of the devices selected), was found to have a
CSRF vulnerability allowing unauthenticated
upload of arbitrary firmware. The EA2700 was
found to have a CSRF file path traversal
vulnerability which can expose all files
(including /etc/passwd):

POST /apply.cgi
submit_button=Wireless_Basic&change_acti
on=gozila_cgi&next_page=/etc/passwd

It also had an interesting CSRF wvulnerability
returning the source code of any page. (This is
one of the few known single character exploits, as
adding trailing / is all that is needed.) For
example:

http://192.168.1.1/Management.asp/

In 2013 researchers hacked over a dozen home
routers [4]  with two remote (CSRF) root
exploits on the Belkin N300, and Belkin N90Q,
and four local (WLAN) root exploits on the same
Belkin devices, plus the Netgear WNDR4700.

The one-line root exploits were (N300):

<form name="belkinN3e8"
action="http://192.168.2.1/apply.cgi"
method="post"/>

N900 exploit:

<form name="belkinNgee"
action="http://192.168.2.1/util_system.h
tml"

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

45



With so many of these devices vulnerable to such
simple exploits, their integrity is at significant
risk. While all of these vulnerabilities are in the
web management interfaces of the devices,
integrity measurement and protection
mechanisms at the device level can detect and
prevent successful exploits of all of these
vulnerabilities.

Threat Model and Integrity Goals

The threat model we consider includes supply
chain attacks, and remote software attack. Can
the attacker compromise the integrity of the
device's firmware — either before purchase, or
over the internet once it is installed? We are not
concerned with local physical attack, as this does
not scale, and is quite difficult to protect against.
In fact, physical presence will explicity be
trusted as part of the proposed defenses.

So what integrity features are possible and
appropriate for embedded devices? One starting
point is to look at the NIST guidelines for BIOS
Integrity Measurement and Protection. While
these guidelines were intended for PC and server
class machines, they are a good starting point.
Currently there are two specific guidelines: NIST-
SP800-155-December-2011 BIOS Integrity
Measurement (Draft) [5], and NIST-SP800-147-
April-2011 BIOS Integrity Protection [6].

The first presents guidelines for “trusted boot” -
the incorporation of a hardware chip as a root of
trust for measuring and attesting to the integrity
of the BIOS itself, and of subsequent software as
it is booted and executed. Note that this
guideline does not discuss “secure boot”, the
much more common hardware root of trust which
validates signatures on software before booting.

The second guideline addresses integrity
protection for the BIOS - the requirements that
BIOS integrity should be protected from remote
software attack, that any updates need to be either
authenticated, or done in some physically
protected local manner, and that the mechanisms
for protection must not be by-passable.

From these guidelines we can derive four related
integrity features desirable in the embedded
device category. For this class of embedded
devices we are mainly interested in four
foundational integrity features (the NIST
guideline terminology is in parenthesis):

= initial firmware validation
(“BIOS measurement”)

+ run-time firmware protection
(“BIOS protection™)

+ firmware update validation
(“Secure/local updates™)

+ boot time integrity verification
(“Secure hoot™);

Table 2 shows the four sample embedded
devices, and that most of these requirements are
not met.

updates?

Pogoplug B¢

D-Link
DIR-505

TP-Link
MR3020

Table 2: Initial Integrity Features

The first exception was that the WRT54GL does
have a JITAG interface through which a user can
read (and write) the firmware in the flash chip.
Normally JTAG interfaces and corresponding
software are quite expensive and complex, but
the WRT community has articles showing how to
do this with free software and roughly $10 for a
parallel port connecting cable.

The second exception is that the pogoplug is
based on a SoC with the built-in ROM code to
boot from a SATA disk drive, and articles show
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how to boot firmware inspection tools securely
from a trusted SATA disk image.

What can be done to cover all of the desired
functions in all of the example devices? One
problem is that vendors say that these features are
simply too large (they won't fit in flash/RAM), or
are too expensive (adding a $0.75 TPM chip is
simply not feasible). So in the remainder of this
paper we show how all of the features can be
added at zero cost and no additional storage
space.

Initial Firmware Validation

How do we verify that a BIOS is authentic? We
can't just ask it while it is running, because it will
lie if it is malicious. We already mentioned the
two methods used by the Pogoplug and the
WRT54: JTAG and trusted immutable boot
ROM.

Another method similar to JTAG is to use the
flash's SPI (Serial Peripheral Interface) to read
the contents directly. Most embedded Linux
devices use SPI flash for the firmware, and the D-
Link and TP-Link devices both do. The SPI bus
was designed to be sharable if it is properly
buffered, and many PC motherboards feature
buffered SPI interfaces for their BIOS for ease of
modification (and the subsequent un-bricking).

Unfortunately the D-link and TP-Link do not
properly buffer the SPI bus between the SoC and
the flash, so any attempt to attach a hardware
reader to the bus results in contention, and neither
the SoC nor the reader function correctly. So at
first this appeared to be an unworkable solution.

While there are many other theoretical ways to
read the flash contents, such as real-time passive
monitoring and reconstruction of the SPI data, or
even power or RF monitoring, these methods are
quite complex and expensive to implement. The
only other known way to validate the flash's
contents is to unsolder the flash chip from the
mother board, so it can be read by the SPI reader
without interference. Having actually done this,

we concluded this was not an acceptable method
for routine validation.

Going back to the SPI bus reading method, we
looked for the simplest, low cost way that an
owner (or even better, the vendor) could properly
buffer the SPI bus. Both the D-Link and TP-Link
devices are based on the same Atheros SoC, so
any solution would work on both devices. Our
preferred method for reading/programming SPI
flash devices is the Buspirate [9] shown in figure
2, combined with the open source flashrom
software application [10].

L )
® usB

%
" MODE

(S8,
R UREG
a-

Figure 2: Buspirate SPI programmer

The buspirate is a $30 device with a USB
interface for power and control from a PC
running flashrom. It in turn has a 10 pin header
with power supply outputs for optionally
powering the chip, and input/output pins for
reading/writing. While there are cheaper parallel
port cables for SPI programming, bit-banging the
SPI lines through a parallel port is much slower
than using the buspirate, which has circuits for
generating the needed serial clock and data
signals directly.

Using the buspirate and flashrom, we
experimentally determined that the SPI bus could
be sufficiently buffered for in circuit
programming with just three additional resistors
as shown schematically in Figure 3. Figure 4
shows the buspirate connected to the MR-3020
while reading the flash contents, and figure 5
shows a more detailed view of the (crudely)
added buffering resistors. The D-Link and TP-
Link circuit boards already have a large number
of resistors; adding three more would cost less
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than 1 cent in quantity, so we think this qualifies
as a zero cost modification (and is much more
convenient than chip unsoldering).

Atheros SPI Flash Bus
Pirate

----- BNl - - - - -CS (pin 1)-----CS
----- a6l -----CLK  (pin 6)-----CLK

- - - -pfofefelglil - - - - - SI (pin 5)----- MOSI
--------------- S0 (pin 2)-----MISO
--------------- V+ (pin 8)-----3.3v
--------------- GND  (pin 4)-----GND
777777777777777 WP (pin 3)
--------------- thold (pin 7)

Figure 3: SPI buffering Schematic

Figure 4: SPI in-circuit-programming

Run-time Firmware Protection and Firmware
Update Protection

The second main integrity goal is to protect the
integrity of the firmware from remote software
attack. While this could easily be done by
permanently wiring the flash's 'WP pin low, this
would prevent valid firmware updates and re-

configurations. So the closely related third goal
is to ensure that updates to the firmware are
allowed, but validated or locally authorized in
some way that is not by-passable by remote
software attack.

The flash chips in all four of the sample
embedded devices have a Hardware Protection
Mode (HPM) which can block all writes to all or
selected parts of the flash based on a combination
of forcing the WP pin low, and then setting a
control register bit appropriately. The HPM
control bit is non-volatile, and survives power
cycles, so the only way to exit HPM mode is to
force 'WP high, and then reset the HPM control
bit.

HPM leads to a very simple method for providing
both flash locking, and secure local update. If
the !WP pin on the flash is normally held low,
with a physical momentary push button that can
force the pin high, then the firmware bootstrap
(u-boot [12]) can simply set the HPM mode bit,
disabling all writes to the chip, locking the chip
against any updates, including remote software
attacks. Then, if an update or reconfiguration is
desired, unlecking HPM mode can be done only
it someone presses the button, establishing
physical presence, for a secure local update.

The MR-3020 uses a Spansion S25FL032A [11]
flash chip. This chip has HPM support, with the
addition of 4 control register bits, which can
select a subset of the chip's address space to
protect. Table 3 shows the MR-3020's memory
layout. For this prototype, the entire chip was
locked, requiring physical presence for any
update or configuration of the device, but by
using the control bits, a subset could be protected
to trade-off security and convenience.

The MR-3020 also has a convenient “WPS”
momentary push button, normally used to begin
Wireless Protected Setup for establishing a secure
connection with a new client. This button has a
default high output, which is forced low while the
button is pushed, which is perfect for controlling
the !WP pin. The button can be used for both
functions, as the software context can understand
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which function is being requested, although the
normal WPS function should be disabled anyway,
due to its security weaknesses.

Figures 5 and 6 show the MR-3020 with both the
one wire !WP modification, along with the three
resistors for SPI buffering. These are the only
hardware modifications needed for this device.

Size Contents
“boot” 64KB

“kernel” 1024KB Linux Kernel

Name

u-boot

“rootfs” 2816KB Linux root filesystem
“config” 64KB
“ART” 64KB

config data

radio config data

Table 3: MR-3020 Flash Layout

U-boot was modified to demonstrate/test the
HPM with physical presence control. At boot
time, u-boot attempts to lock the chip, in case it
was unlocked before, and then attempts to unlock
it. If the WPS button is pressed, then the unlock
will succeed, and updates can be applied. If the
WPS button is not pressed, then the unlock will
fail, and updates will not be possible. In either
case, before booting the Linux kernel, u-boot will
re-lock the flash.

Figure 5: modified MR-3020 Bottom View

Figure 6: modified MR-3020 Top View

The following u-boot conscle log shows
debugging output with the button pressed and not
pressed. A status register value of 2 is unlocked,
and Sc or e is locked:

2
C

9e

Write_protect: starting SR
Write_protect: ending SR =

Write unprotect: starting S
Write_unprotect: ending SR

Write unprotect failed.

9e

I 2wl

Write_protect: starting SR = 2
Write_protect: ending SR = 9c¢
wWrite unprotect: starting SR
Write_unprotect: ending SR =
Write_unprotect succeeded.

= 9e
2

Integrity Protection on DIR-505

The DIR-505 has a similar WPS momentary push
button for WP control. It also has an interesting
sliding switch for controlling the operating mode
of the device, to choose between Router,
Repeater, or Hotspot mades. This sliding switch
actually is a four position switch, with the fourth
position unused. The fourth position can be
accessed simply by trimming the plastic slide a
bit, so that the fourth position can be reached, and
used to force the !WP pin high to allow
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updates/reconfigurations. Figure 7 shows the
modified DIR-505 slide switch.

= Repeater

LWLﬂ
Hotspot

Figure 7: modified DIR-505

Boot-time Integrity Verification

The fourth integrity goal is to validate the
firmware at boot time (“secure boot™). Assuming
that the u-boot partition is locked with HPM as
discussed, then it can be a trusted root to validate
the linux kernel before loading and booting it. If
the kernel is signed with a private key, and the
corresponding public key is stored in the
protected u-boot partition, then u-boot can do the
validation, and the key can be changed only with
physical presence.

This secure boot, with physical presence
controlled key management was implemented on
the MR-3020. The MR-3020 was chosen as it
provided the greatest challenge. With the smallest
flash chip (4MB), its entire u-boot partition is
only 64K bytes, and the existing u-boot code used
54K, leaving just 10K bytes to implement all of
the needed functions (HPM flash locking with

physical presence control, RSA signature
validation, and public key storage and
management.

The RSA signature verification code was derived
from the PolarSSL library [13] by stripping out
everything not needed, The kernel signature was
created with standard openssl commands, and the
resultant binary signature simply appended to the
end of the kernel. The (single) validating public
key was stored in binary form at the end of the u-
boot partition. The combined flash locking and
signature verification code added roughly 8K
bytes to u-boot, increasing its total size to 62K,
which with the public key still fits within the 64K
partition.

The following u-boot console debugging output
shows hex formatted output of the shal hash of
the kernel, the public key modulus, the binary
PKCS1.5 signature, and the results of the
verification.

## Booting image at 9fQ20000 ...

kernel shai
E9321D87C091F971C8D955C399EBAG3807429A61
modulus:
9292758453063D803DD6O3D5E Y7 7/D788BEDLDS5BF
35786190FAZF23EBCOB48AEA
DDAS2CAGC3DE0B32C4AD109BEQF36D6AEY130B9CE
D7ACDF54CFC7555AC14EEBAB
93A89813FBF3C4F8066D2D800F7C38A81AE31942
917403FF4946BOA83D3D3ENS
EE57CBF5F5606FB5D4BC6CD34EEQOBOLIALESABBY 7
BO7507233A0BC7BACBF90FT79

signature:
2CBOF653FF3BBCFF2E31ACCO840F02A84975B716
7291BB36EEE3F74D0O2EB3B6A
ACADED2CBCFEEZ2326230C296E4D8ABD7OF309479
B388A99591AD5C41938280E3
F51EA9865EDBAO360A0F5BDEA6CE676C363B43E54
61D9CCFROD46GE1B5449CB262
BDE36CAD4AFBEES1ED731BBF48340F290DF8DD84
4791D81259CEDF99CD1CA2ZES

rsa verify kernel succeeded

Uncompressing Kernel Image . 0K

Summary

Table 4 shows the final results of these
modifications on the D-Link and TP-Link
devices, and similar modifications on the
Pogoplug and Linksys devices. With essentially
zero cost hardware and software modifications
we can meet all four integrity goals on all four
example devices. With firmware measurement,
we can detect supply chain or other firmware
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modification. With HPM locking, we can protect
the firmware from remote modification, even if
the remote attacker gets the root password as in
all of the earlier described web management
vulnerabilities. As physical presence is needed to
unlock the flash, we provide secure local update.
If the kernel partition is not locked for
convenience, secure boot can provide strong
validation, with secure local update of the

validating public key.

Secure

Joot?

Device

Pogoplug

D-Link

DIR-505
TP-Link
MR3020

Table 4: Integrity features after modification.
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Return-Oriented Programming (ROP) is an important attack technigue that bypasses
data execution prevention by utilizing fragments of code that are part of the underlying
system. ROP exploits re-usable segments of code that end in a return-from-function in
either the operating system (OS) or the application under attack. Return oriented
programming works against Complex Instruction Set Computing (CISC) and Reduced
Instruction Set Computing (RISC) systems with stack architecture, regardless of
whether the stack is supported by hardware.

A separate linkage stack that is reserved for use by the operating system does not
provide protection to application code. An attacker using ROP does not have direct
access to the machine state. The attacker is interfacing to an application over the
network through an Application Programming Interface (API), or is interfacing to the
underlying OS or Hypervisor through the syscall or heall interface. By supplying the
chosen data to some legitimate interface, the attacker can cause the object under attack
to write arbitrary data supplied by the attacker onto the stack. The data supplied by the
attacker is the ROP.

In current hardware or software stack base architectures work, when one program calls
another, the return address and some system states are pushed onto the stack. (Figure
1A). The order of pushing state onto the stack is not material. In some computer
architectures, the return address is pushed onto the stack and the callee has to put the
state of the caller onto the stack so that it can be restored. Upon return, the callee pops
the state off the stack (or restores the callers state), and then executes a return
instruction, which branches to the address on the top of the stack and pops that address
off the stack.

This type of mechanism can be made arbitrarily complex. For security reasons, the
responsibility for saving the caller's state can be moved from the callee to the caller and
can be moved from software to hardware™. Another ROP enabling feature is the
allocation of dynamic variables on the stack. (Figure 1A) If there is a buffer overflow
vulnerability or a similar program bug in an application or system, then an attacker can
write chosen data onto the stack. The attacker can therefore overwrite the caller's
return address with another address. (Figure 1B.)

Many modern processor architectures added Data Execution Protection (DEP), which
prevented the execution of code from the stack (or other restricted data areas). The
creators of ROP treated all of the code in the system as data and observed that many
sequences of code ended in a return instruction. These sequences of code are referred
to as gadgets. Code gadgets has been analyzed and found to be Turing complete. The
attackers then shifted from writing executable code to utilizing tools that created useful
attack functions from the gadgets available in a normal system. The attack occurs by
exploiting a buffer overflow (or similar vulnerability) to write a sequence of return
instruction onto the stack that corresponds to the desired function.

Figure 1: (A) Data typically found on a stack. This data can include arguments to target
programs. (B) lllustrates why buffer overflows overwrite return addresses.
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A method is needed to either prevent entering code at arbitrary points or prevent buffer
overflows (and similar bugs) from enabling changes to the control flow of an
application/system.

The first solution prevents control flow perversion by separating the stack containing
return values from the stack containing dynamic data, making ROP no longer possible.
This solution works because even though the attacker may find a buffer overflow
vulnerability, the only consequence of the vulnerability is to overwrite data that belongs
to some other routine on the call stack. This solution is described as a dual-stack
architecture. (Figure 2)

On the first stack, called the linkage stack, the system places linkage information, and
the second stack, called the data stack, is used for dynamic data (e.g., arguments that
passed to functions and automatic variables instantiated on the stack). Buffer overflows
can only occur on the second stack. This is true whether the stacks are implemented
by hardware or software. Hardware DEP can be implemented for one or both stacks to
increase protection. If a machine has hardware state save and linkage instructions (or
function call and return instructions), then the hardware implementation of the linkage
stack can prevent any instructions except linkage and state save instructions (or call
and return instructions) from writing to the linkage stack.
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Figure 2: The first approach separating the linkage/control stack from the data stack. In
this approach, overwriting a buffer can never affect the linkage machine state on the

linkage stack.

Return Addres | Dynamic data
Machine State 1
| Stack Frame | 4 Dynamic data =
Return Address = .5
| | 5 ¢ : 1 -
- |_Dynamicdata |
Machine State = : [ i
Stack Frame = £
Dynamic data <

Return Address

Machine State

. |
Stack Frame Dynamic data

Linkage Stack Data Stack

Linkage stack pointer D',mamicldata Stack
] pointer

The minimal information required on the linkage stack is the return addresses. An
obvious extension of this concept is to place all machine states on a separate stack

from dynamic data to prevent an attacker from modifying any machine state of a prior
computation.

Simply having two stacks is insufficient to prevent ROP if the stacks are incorrectly
placed, as illustrated in figure 3A. To allow arbitrary placement, a mechanism is needed
to stop an overflow from one stack progressing over the second stack. Options include:
» Incorporating segments (an architectural change that places the control stack in
a separate memory from the dynamic stack. Only the linkage instructions and
machine state save/restore instructions can be enabled to write to the control
stack.).
* Placing the stacks properly with respect to associated growth (Figure 3B).
« Unmapping a small range of addresses to a bound stack in order to force an
exception if a program writes beyond the limit. (Figure 3C) Any other hardware
mechanism, such as base and bound registers for the stacks with automatic

checking, is also sufficient.

Figure 3: Options for multiple stack pointers. (A) Incorrect placement of two stacks;
ROP is still possible. (B) Correct placement of two stacks; ROP is not possible. In (C),
the top and bottom of each stack is bracketed to eliminate the possibility of ROP.
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ROP is enabled in part because stacks and arrays are indexed in the opposite order
(figure 1A & 1B). The system pushes items onto a stack by decrementing and removes
items from the stack by incrementing the stack pointer, respectively. When the
elements of an array are referenced, the addresses of the elements are computed by
adding (or incrementing) to the base address of the array. Consequently, when
elements are written beyond the end of a dynamically allocated array, those elements
overwrite other data that is on the stack. The data overwritten might contain return
addresses. If, on the other hand, elements are added to the stack by incrementing and
elements are removed from the stack by decrementing, then overwriting the end of and
array writes into a stack area that has not yet been used. In this case, if the call stack
goes deeper than the offending routine, then the elements that were written by the
offending routine will/may be overwritten by stack frames or dynamic data from a routine
deeper in the calling tree.

Simply changing the way the stack is indexed opens the possibility that someone could
find an exposure in an API that causes a program to write in the reverse direction for
dynamic variables. Therefore, changing array and stack indexing only affects the attack
in its current form and not the fundamental issue, dynamic data intertwined with control
data exposing the control data to manipulation via dynamic data. Protections similar to
the two stack protections could/should also be employed.
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A second aspect of the solution is a method for preventing execution through a linkage
instruction such as a jump or return at arbitrary points in code. For any architecture with
fixed length instructions, arbitrary assemblage of gadgets can be prevented by adding
additional information into memory. Assume the architecture has instructions that are
thirty-two bits long. A thirty-third bit can be added. The extra bit informs the instruction
execution unit whether the associated instruction can be the target of a linkage
instruction. The approach modifies the architecture so that any attempt to pass control
to an instruction that is not flagged causes an exception. For arbitrary length instruction
architectures, a similar approach can be taken. An extra bit can be added to the
minimum width instruction. For example, if the minimum instruction is one byte wide, a
ninth bit can be added to each byte. If the minimum instruction is two bytes, then the bit
is added for every two bytes, etc. For both types of architectures, the compiler and
assemblers have to be modified to add the information into the binary object so that
memory is appropriately marked.

In an architecture in which call and return instructions automatically manipulate the
stack, another approach to solve this problem is tag bits. Whenever a call instruction is
executed, all of the data that it pushes onto the stack (register and return address) is
marked with the tag bit set. The return instruction, when popping the data off the stack,
clears the tag bit for the data it popped off the stack. Any store to a double word with
the tag bit on, raises an integrity violation exception. As long as the only instructions
that can write the tag bit are the call and return instructions, the linkage information and
dynamic data may be combined and there is no risk from buffer overflows. In fact, any
overflow from a data area into the linkage stack area will be detected. (An additional
privileged instruction would/may be needed to clear out the tag bit in the case where a
program abnormally terminates.)

These approaches can be combined, and are not mutually exclusive. ROP can be
prevented with a change to the architecture of the underlying system. The difficulty of
implementing the change depends on how the architecture is implemented.

*US patent US8850557B2
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Science and Technology Directorate, Cyber Security Division (OHS S&T/CSD) via BAA 11-02; the
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Hardware-based Isolation for Secure Execution of VMs

[In a Cloud Computing Environment] *

ABSTRACT

In computing systems, virtvalization is the primary method of sep-
arating different users computation and data. The set of resources
allocated for a user is exposed as a virtnal machine (VM) and nser
workloads interface with a hypervisor for using physical computer
resources, This abstraction can be further leveraged for isolating
and protecting VMs from not only each other but from the under-
lying hypervisor.

In cloud systems, and in particular Infrastructure as a Service
(IaaS) clonds, the clond service provider {CSP) controls and man-
ages the hypervisor. In current designs, this requires the customers
to trust that the CSP is not malicious, and the CSP-managed hyper-
visor is secure against attacks that can compromise the applications
of the customers, These assumptions lead o increased concerns
aver the security and privacy of customer data hindering the adop-
tion of cloud services.

In order to isclate sensitive customer applications from other
WMSs as well as all privileged software, we present a modification
to the Power Architecture called Access Control Manager {ACM).
ACM is a hardware and firmware security enforcement mechanism
prototyped in a server-class processor. ACM intercepts hypervisor
aceesses to secure VM data, and presents it in a form that protects
integrity and confidentiality. Our architecture allows secure exe-
cution of a virtual machine { VM) transparently to the applications
within the VM.

1. INTRODUCTION

"'Nme: This material iz bazed on rezearch sponsored by the Department of Homeland
Security (IDHS) Science and Technology Directorate, Cyber Security Division {DHS
S& TACSDY) via BAA 11-02; the Dep of National Def: [ Canada, Defense
Research and Development Canada (DRDC); and Air Force Research Laboratory In-
formation Directorate via contract number FAS750-12-C-0243 , The U.5, Govemment
and the Department of National Defense of Canada, Defense Research and Develop-
ment Canada {DRDC) are authorized to reproduce and distribote reprints for Gov

1 purg i ding any copyright notation thereon. The views and
conclugions contained herein are those of the authers and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of the Department of Homeland Security; Air Force Research Laboratory;
the 1.5, Govemment; or the Department of National Defense of Canada, Defense
Eesearch and Development Canada (DRDC),

ACM ISEN 978-1-4503-2138-9.
DOL: 10.1145/1235

In cloud computing, customer applications rely on the system
software managed by the CSP for providing services, including
providing access to the system resources. However, in current de-
signs, this also means the CSP-managed software has total control
over the customer’s data. The operating system or the hypervisor
can access or modify the data of the application, or tamper with
any security features implemented in userspace, without being de-
tected. Therefore, all CSP-managed software has to be a part of the
trusted computing base (TCB), and customers are forced to trust
that: the entities that develop, configure, deploy, and control the
CSP-managed software are not malicious, and the CSP-managed
software itself is secure against attacks that can compromise the
confidentiality and integrity of the customers’ applications. This
broad trust requirement is often difficult to justify and poses a sig-
nificant risk, or prevents the adoption of public clond services.

CSP-managed software, that includes the hypervisor and the op-
erating system, comprises millions of lines of code, developed by
large and often disparate teams of programmers. While these com-
ponents are responsible for isolating executables as well as entire
virtual machines from one another to protect sensitive information,
they are themselves exposed to security vulnerabilities.

For example, a critical volnerability in a virtual floppy disk con-
troller in QEMU, called Venom, was discovered [21]. Venom al-
lows the attackers to escape the VM into the host, and to access
the data of other VMs. This vulnerability was introduced in 2004,
and it was available in most major virtualization software for over
a decade.

In order to provide protection that is independent of the secu-
rity of the entire CSP infrastructure, we are introducing the Access
Control Monitor { ACM} that provides secure isolation of VMs and
applications from one another and from system software. ACM
[5] is implemented in hardware and a software component called
ACM firmware, Ata high level, ACM protects physical pages that
belong o a secure VM (SVM) from being accessed in clear text
from other software. When system software accesses a secured
page, ACM presents the page in a form that protects integrity and
confidentiality.

Figure 1 shows the overall architecture of ACM. Each ACM-
enabled processor has a set of asymmetric keys that are used for
protecting the secrets of the SVM., An SVM is a regular VM that is
packaged for ACM with its secrets encrypted with the public ACM
key of the target processor. The private ACM key is protected by
the Trusted Platform Moduole (TPM) and becomes available only
when the correct ACM firmware is loaded during boot. The trusted
entity that manufactures and distributes the ACM-enabled proces-
sors issues certificates for their public keys.

The ACM protection mechanism is based on an assignment of
processes and their data to security domains, The hypervisor or the
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Figure 1: Overview of the ACM architecture

operating system (OS) is in the same security domain as all the nor-
mal VMs (NVMzg). those not isolated (protected) by ACM security
capabilities. Each of the SVMs is assigned to its own security do-
main so that its data (and state) can be protected from the others.
Secure entity identifiers (SEIDs) represent the security domains in
the hardware. Hardware enforces the isolation boundaries associ-
ated with security domains based on SEIDs,

ACM firmware runs in ultravisor mode, a new CPU mode that is
al a privilege level above hypervisor mode. This firmware, along
with the ACM hardware, is responsible for maintaining SEIDs as-
sociated with processes and memory and enforcing the associated
access restrictions. We implemented our architecture using a full
function simulator [8] by modilying the model for a Power 8 pro-
cessor [26]. In addition, this firmware provides oversight of all
hypervisor services. such as page table management, that must be
coordinated with SEID management. Hardware mechanisms are
used to invoke ACM firmware whenever a transition between secu-
rity domains cccurs, 10 enable the ACM (irmware (o assure that the
state of a process in one domain is properly isolated from the state
ol a process in another domain. Finally, subsystems that can inter-
act with the memory independently of the processor also have to
be modified so that the ACM firmware can validate their accesses
before they occur.

1.1 Contributions
This paper makes the (ollowing contributions:

+ Weintroduce ACM, an Access Control Mechanism for cloud
computing, that protects the confidentiality and integrity of a
VM from software outside the VM including privileged soft-

ware thal is used 1o manage (he cloud compuling envivonment—

and malware outside the VM that may be able to obtain root
privilege by exploiting a bug in the privileged software,

o We discuss the high-level architecture of ACM as well as
an implementation of that architecture on an IBM POWER
SCIVCT.

* We demonstrate that Linux/KVM as well as an unmodified
VM can boot on a type-1 ' implementation of ACM.

» We have reported on the initial performance measurements
of this architecture.

'Type-1 ACM firmware required no paravirtualization Type-2
ACM firmware requires paravirtualization.

2. THREAT MODEL

ACM protects the conlidentiality and integrity ol an SVM’s code
and data from the other software on a system including the hy-
pervisor and other VMs. whether the SVM is in exccution or al
rest. Even a privileged attacker, such as a malicious or compro-
mised hypervisor, cannot access or tamper with (without detection)
an SVM’s memory pages or disk blocks. ACM makes no attempt
to guarantee availability in the face of a hostile hypervisor. In other
words, Denial of Service is out of the scope of the threat model.

ACM ensures that no unintended state of an SVM can leak to the
hypervisor because ol an asynchronous interrupt or when the VM
makes a call to the hypervisor. An SVM’s registers are protected
from the hypervisor, and are saved and restored securely upon a
context switch. ACM allows SVMs to share memory with one an-
other. [l also enables the SVMs Lo share unprotected pages with the
hypervisor. ACM makes no attempt to protect network [/O, as this
is addressed by existing technologies, such as TLS and IPSEC.

A malicious hypervisor can observe an SVM's memory access
patterns, and measure the time that SYM takes before a context
swilch. In extreme cases, such side channel information may leak
some private information. ACM does not protect against these side-
channel attacks. Moreover, ACM does not encrypt data in mem-
ory unless it is accessed by an unauthorized entity. As a result,
ACM may be susceplible to hardware atlacks like memory prob-
ing. Also, persistent memory retains its contents even after loss of
power. Consequenlty, if an SVM were running in persistent mem-
ory the unencrypted contents could be available afer power down.
Such hardware artacks are out of scope of the threatr model. We
note that hardware attacks such as memory probing are extremely
difficult on POWER architecture because of its design of memoty
controllers.

Security is ultimately limited by the correctness of an SVM and
the application(s) running inside the S¥M, Logical or semantic
weaknesses in the application or the guest OS, such as an exploitable
buffer overflow, can allow an attacker to compromise an application
or the SVM and gain access to confidential information. Properly
written software can leverage ACM feamures to protect its secrets.

3. RELATED WORK

There is a long history of using hardware features to isolate soft-
ware from a compromised system software, starting with XOM
[20]. Table 1 compares Secure Executables to related work.

XOM [20] is a set of architecture changes that extends the no-
tion of program isolation and scparalc memory spaces Lo provide
separation from the OS as well. They introduce “secure load” and
“secure store” instructions, which tell the CPU (o perform integrily
verification on the values loaded and stored. For this reason, the
application transparency is limited: developers must tailor a par-
ticular application to this architecture.

Aegis [28] fixes an attack in XOM by providing protection against
replay attacks. This requires using an integrity tree to protect mem-
ory. The authors also offer optimizations specific to hash trees
in this environment that greatly reduce the resulting performance
overhead. These optimizations include batching multiple opera-
tions together for verification, and delaying the verification until
the time where the values affect external state. Again, the approach
is nol (ransparent 1o developers: (he sel of sensilive code areas must
be explicitly specified by the developer. Additionally, the devel-
oper must identily the specific caloulations requiring expensive in-
tegrity checkpoints. which are the only places tamper checking is
performed. In contrast, ACM maintains integrity guarantees when-
ever the data is accessed by the system software.
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Flicker SP XOM  Acgis  Overshadow SB+  SCX  Tse-X ACM
Reguirements
Works without hardware changes v X X X v X X X X
No 08 in Trusted Code Base Card OSin TCB s rd Host OS in TCB v rd v No hypervisor in TCB
Works withont 5 support v X X X v X X X v
Pratcclion
Code privacy (transparently) X X X ' X ' v ' v
Resilient to Memory Replay Attacks v X X ' v ' v v v
Protection from Physical Altacks x ' 7 s x 7 v X X
Features
Multiple Simultanecus Instances X X ' v v v v v '
Multi-threading/Multi-core Supporl X X X X 's ' X X v
Support $Shared Memory Regions X X X X X ' X X v
Virtualization Support X X X X v ' X X '
Table 1: Comparisen with related works
Secret-Protecting Architecture [1%] provides a mechanism to EA OO0 OO O OO0 2 OO ooo ood
run cﬁode ina teujn|)ﬂ—protef:ted environment. I'he aluthors dgstgn ossses @ @ @ @ & o o
in [13] a mechanism extending a root of trust 1o supporting devices.
T—Iowc-;_\-er: this technique does not have the transpfu'ency of other VA pEEDEOEEOES
techniques. For example, there can be only one Secret-Protected
application installed and running at o given point in time., The abil-
ity of protected applications to make use of system calls is likewise TR
limited. RA EEEEE
TPM (Trusied Platform Module), widely deployed on existing
consumer machines, can be used to provide guarantees that the op- fid

erating system that was booted has not been tampered with. It does
not exclude the operating system from the trusted code base, how-
ever. Instead, during a trusted boot all the soltware in the system is
measured before it is executed and extended {or hashed} into a I'CR
(platform conliguration register). Using remote allestation the state
of the PCRs can be securely transmitted to a third party who can
confirm that they are as expected. Linux IMA (Integrity Mcasure-
ment Architecture) can uses measurment and the TIPM, if present,
to protect against (detect and prevent execution) modification of
modules and configuration files wile the system is running.

A separate class of approaches, including Flicker, uses the TI’M
late-launch feature to protect software from a compromised operat-
ing system.

Flicker [23] provides a hardware-based protection mechanism
that functions on existing, commeonly deployed hardware (using
mechanisms available in the TPM). As with other solutions, this
incurs only minimal performance overhead. It provides a protected

execution environment, but withoul requiring new hardware changes.

The trade-off is that software has to be specifically developed to run
within this environment, The protecied environment is ereated by
locking down the CPU using TPM late-load capabilities, so that the
protected sollware is guaranteed Lo be the only sollware running al
this point. System calls and multi-threading in particular do not
work [or this reason. Morcover, hardware inlerrupts are disabled,
so the OS is suspended while the protected software is running.
Thus, soltware targeted lor Flicker must be writlen to spend only
short durations inside the protected environment. The advantage
of Flicker is the reduced hardware requirements: it is supported by
existing TIPM-capable processors.

Overshadow [11] provides guarantees of integrity and privacy
protection similar to AEGIS. but implemented in a virtual machine
monitor instead of in hardware, This upproach has several other
advantages as well; making the implementation transparent to soft-
ware developers—Tlor example, soltware shims are added o pro-
tected processes to handle system calls seamlessly. This means,

Figure 2: Current memory addressing scheme in server-class
POWER processors.

however, that there is no protection provided against malicious sys-
tem software. The cloaking approach, where the OS sees an en-
crypted version, is similar to the mechanism employed in ACM.

SecureBlue++ [9] [10] uses encryption and integrity trees for
securing all data that leaves the processor. It provides isolation at
the process granularity while supporting mult-threading and mem-
ory sharing. SecureBlue++ uses system call wrappers, which trans-
parently manage system ealls from a seeured application, otherwise
unmodified. The packaging of secure executables with public key
cneryplion is similar Lo the packaging ol VMs in ACM. Sccure-
Blue++ protects the integrity of cache lines, which can result in an
integrity tree with approximately 14% space overhead.

SGX [24] {Software Guard Extensions) is recently introduced
in Intel processors. SGX protects portions of an application, called
enclaves that are explicitly entered and exited. This reduces the
transparency, since the developer has to slice the application and
protect the interface. Haven [7] shows how SGX can protect an
unmadified binary by creating a unikernel inside the enclave, but
as pointed out in an SGX manual [17] enclaves should be made as
small as possible because of the hard limit on protected memory
size.  Similar to SecureBlue++, SGX uses an integrity tree for
enclave memory and its size is limited to 128 MB.

Tsa-X [14] considers a threat model identical 1o ACM. However,

the granularity of the protected portions is similar to SGX, and re-
quire explicitly placing the sccure code in a compartinent.

4. MEMORY ACCESS CONTROL
4.1 POWER Memory Addressing
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The current memory addressing scheme of POWER systems [22,
26] is represented in Figure 2. The yellow boxes at the top repre-
sent pages (size not defined) of memeory. The blue circles bellow
represent processes. One of those processes is the OS that manages
resource allocation and scheduling for all the other processes in the
system. The OS has a single virtual address space represented by
the green boxes. The OS maps from effective addresses (EA), yel-
low boxes, to virtual addresses (VA), green boxes, The VA spuce
can be significantly larger that the physical memory. The page ta-
ble is used by the hardware o map from VA Lo physical addresscs
(PA). If there is no hypervisor, then the OS manages the page ta-
ble and the associated mappings. T there is a hypervisor, then the
server is divided into several partitions each of which appears to be
a machine. The hypervisor owns the page table, the OFS is relegated
to mapping from VA to real addresses (RA). The hypervisor inter-
cepls all actions of the 08 on the page table and changes the RA
specified by the OS to a PA.

This current model has the following propertics:
o OS manages the translations EA to VA to RA and installs in
the page table along with read/wrile/execule permissions.

o Hardware enforces the accesses permissions as specified by
the page table.

o If o4 hypervisor is present, it intercepts the page table updates,
translates RA to PA and then inserts the PA into the page
table.

For isolation, the hypervisor maps diilerent EAs and VAs 1o
distinct RAs,

Sharing can be accomplished by cither sharing the VA or the
RA,

» Inall cases the hypervisor retains access to (S pages

4.2 ACMMemory Controls

ACM extends the addressing systems represented in Figure 2
wilh the concept ol security domains as illustrated in Figure 3. The
architectural concept referrad to as a color in this section is repre-
sented by an SEID in the hardware implementation.

A security domain is simply a disjoint set of processes and their
associated memory (EA). In Figure 3 the domains arce illustrated by
rectangular boxes surrounding processes and their associated mem-
ory (EA). Note thal, as illustrated in Figure 3, the system software
can be in 4 separate domain from the processes it is managing. Se-
curiry domains have the following properties:

o Sceurity domains are disjoint collections of processes; in par-
ticular all processes of a VM could be in one domain.

e They enforce data isolation and sharing across domains (the
word "data" connotes both code and data pages).

— Private data, that is data that is not supposed to be shared,
in one domain cannot be accessed by another domain.

— Designating and sharing of specific data across domains
is permitted by explicit sharing-control primitives.

— ACM assures Lhat for cross domain operations only ex-
plicit parameters are passed between the domains, ie..
no parameter not explicitly needed for the sharing op-
eration are passed.

— ACM assures that no informaticn leaks out of a domain
due 1o an asynchronous interrupt.

EA JOOO OO O ooo oo Oooo ooo
rocesses | @ @)1 @)| O J|&B © O
VA QOoOooooooo
i as
RA ODoooo
PA

Figure 3: Power memory addressing and ACM domains.
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Figure 4: ACM registers and address translation

e The system software continues to do resource scheduling
(CPU and memory) for all processes in all domains. and the
system software can employ conventional techniques of ad-
dress mapping (o accomplish isolation and sharing of data/-
code among processes within a domain.

» The system software retains responsibility for paging. It must
waork with ACM 1o assure thal pages have the correct eolor.

4.3 Coloring of Private and Shared Pages

Colaoring is introduced into ACM to facilitate controlled sharing
of some pages.

Each domain is assigned a unique color as shown in Figure 3
where the colors assigned to domains are represented by di, da. o,
and d. Fach memory page that is assigned to o domain is given the
same color as the domain. In Figure 3 domain ds has two unique
pages (VA) assigned to it, shown in green color. Any set of pages
that is shared with two or more domains is alse given a unique
color. Shared pages are represented by s1 and sz in Figure 3, where
we can see that there are two pages with color s» and one page with
color s1. Tach domain also has associated with it a palette of colors.
This palette contains the color of the domain and the color of every
shared memory page (hat the domain is allowed Lo aceess. Tn order
to enforce isolation and sharing, ACM manages the palettes and
color mappings, as shown in Tigure 3.

5. HARDWARE SUPPORT FOR MEMORY
ACCESS CONTROL

This section describes hardware support for ultravisor mode. The
hardware is deseribed in lerms of changes to an existing TIBM POWER
8 processor [15, 26]. We added a new bit to the MSR, added seven
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Figure 5; One new hit, the UV, bit has been added to the MSR,
When {/V = 0 the thread is not in ultravisor mode. When
UV = 1T HV = 1 and PR = 0 (the problem state bit is not
illustrated) the the thread is in ultravisor mode. Other combi-
nations are reserved.
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Figure 6: The ACM Control Register (ACMCR} is a 32 bit reg-
ister,

new control registers, modified the Page table layout, added a new
table that is shared between the ACM firmware and the hardware,
modified the operation ol existing interrupls, we added some new
interrupts. modified some existing instructions, and added some
new instructions. All of our modifications to preexisting hardware
are buckward compatible.

5.1 Changes to existing control registers
A previously reserved bit in the MSR, as illusirated in figure 5,
is used to indicate that ultravisor mode is active.

5.2 New Control registers

ACM adds six new por thread registers, ACMCR, USPRGO, US-
PRGI, USRRO, UDAR and USRRI1, and one new per core register
URMOR. The ACMcontrol register is illustrated in {igure 6. The
remaining double word registers are modeled atter existing hyper-
visor privileged registers.[rel’ power architecture document]. The
formal names are as follows:

e URMOR Ultravisor real mode offset register.

¢ USPRGO and USPRG1 Ultravisor mode special purpose reg-
isters 0 and 1 are only available to the ACM firmware.

USRRO and USRRI1 vlravisormachine status save/restore
registers (0 and 1. These registers hold the machine state at
the titne an interrupt, USRRO is the instruction that was in-
terrupted and USRR1 is the MSR.

UDAR Ultravisor data address register.  Sct to the effee-
tive address associated with the storage access that caused
an SEID interrupt.

The function of these registers is the similar to the hypervisor ver-
sion, which all start with an H instead ol a U as the {irst characler.
The bits in ACMCR fall into two groups, those that inform ACM
firmware aboul (acilities used by the thread and those that con-
trol/influence the operation of the hardware. Three bits, vector un-
available, VS8X unavailable, and FP unavailable., indicate whether
the corresponding facility is available in the current SVM.ACM
firmware only saves state associated with these features during a
state transition when the state is being used by a thread. There are
two bits, SV and SE, that tell the ACM firmware what kind of se-
cure entily is aclive an SVM or a secure executable. When an SVM
is active hypervisor directed interrupts are intercepted by the ACM
firmware. There are two bits, DV and DE, that tell the hardware
what kind of state transitions have to cause an ultravisor control
interrupt. 1f DV is set all changes to LPIDR cause an ultravisor

o

Base Address reserved SZ

45 59 B3

reserved
0 1 4

Figure 7: SEIDBAR: When hit {) is 1 the ultravisor is enabled.
The base address ficld contains the high order 41 bits of the
60 bit real address of the SEID table. The size field is used to
generate an index into the table, The SEID table is referenced
by both the ultravisorand hardware.

bSEID
0 16

cSEID1 cSEID 2

32

cSEID 3
48

Figure 8: The SEID register contains a base and three ¢om-
pound SIEDs each 16 bits.

control interrupt. Finally there is one bit, IS, that is used to direct
external interrupts to either the ACM firmware or the hypervisor.
by controlling the operation of the hardware, the number of inter-
rupts i the ultravisor can be reduced.

5.3 SEID support

The new ultravisor mode resources are Llwo new registers and the
SEID table. The SEID represents the color associuted with a se-
cure VM. the new registers are a per core SEIDBAR (SEID Base
Address Rgister) and the per thread SEIDR (SEID Register). The
SEIDBAR, illustrated in figure 7, has two functions enabling AC-
Mand defining the SEID table.

The SEID register, illustrated in figure 8. contains the base SEID
(16 bits) of the current secure entity and space lor three additional
colors, The bSEID field in SEIDR contains the base SEID for the
current process. This SEID identilies the securily domain in which
the process executes. SEID are assigned by ACM firmware when
a secure VM is first entered. ACM firmware assigns a single SEID
to the hypervisor when it first transfers centrol to it.  All normal
virtual machines started by the hypervisor inherit this SELD.

Compound SEIDs arc used to represent sharing relations among
secure domains. When a page is to be shared between two or more
secure domaing, an otherwise unused SEID is assigned (o that page,
and added to the palette of SEIDs that each of those security do-
mains are allowed to access. The ¢SEID fields in the SEIDR are
used to cache up to three such compound SEIDs for the current
process.

5.4 Page table modifications

Secure pages are (hose thal belong to an SVM. Secure pages
are indicated by a previously reserved bit, the SA bit, bit 6 of the
second double word of a page table entry. When set it indicates that
the page belongs to a secure virtual machine.

5.5 SEID Table

The SETD Table is a variable-sized data structure that specifies
the SEID(s) associated with each 4KB block of real address space.
The SEID table can be any size 2™ bytes where 19 <— n <— 43.
The starting address must be a multiple of its size. The SEID Table
contains SEID Table Entry Groups (STEG). A STEG contains 16
SEID Table Entries (STEs) of eight bytes each. ACM firmware is
responsible [or atomically updating the SEID table.

Each SELD Table Entry (STE) contains an mSEILD for one 4KB
block of real address space. Figure 9 shows the layout of an SEID
table entry. The ARPN (Abreviated Real Page Number) field of
the STE provides a tag to disambiguate entries within an STEG.
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/7 ARPN PG /| rwx SEID
o |a 40 |43 [a5 | a8 63

Figure 9: SEID table entry The reserve fields in the SEID ta-
ble entry are marked with /. ARPN is the Abreivited real page
number, PG is an encoding of the page size 000 4K, 011 1GB,
100 16MB, 101 64KB, 110 16GB, 111 2MB, RWX ar¢ read,
write execute permission for the page, and SEID is the mSEID
of the page.

The SEID table is maintained by ACM lirmware and used by the
hardware.

During address translation when a page table search succeeds in
finding a real address {RA) where the corresponding PTE[SA] bit
is asserted, an SEID Table search is performed to validate access
to that real address. If the PTE[SA] bit is negated, the SEID Table
search is bypassed, and access is allowed.

Every rcul address is associated with a single SEID Table entry
eroup (STEG). The starting address of that group is calculated by
combining a hash ol the real address with the base address specilied
in SEIDBAR.

Once the STEG is located, up to 16 entries in the group must
be tested to determine if any match the current access, When the
ultravisoris running SE1D enforcement is bypassed. Otherwise for
a match to cxist, the following conditions must be satisficd

The abreivated real page number must match

The SETD must match onc of the SETDs of the secure entity.

The access bit, RWX corresponding to the type of access
must be sct.

The page size, STEpg;, must be at least as large as is specified
in the corresponding PTE

If the SEID table search succeeds. the access is allowed. In
that case, the translation determined by the PTE., ulong with the
PTE[SA] bit, the SEID, and RWX fields of the matching STE, are
cached with the translation, as appropriate.

If the SEID table search fails, an instruction SEID mismatch ex-
ceplion or a data SEID mismartch exception occurs, depending on
whether the real address is for an instruction fetch or a data access.

Conceptually, the SEID Table is an extension of the Page Ta-
ble. When the Translation Lookaside Buffer {TLB) is used to cache
page table entries, the correspending TLB entries include enough
information o allow the access controls defined by the SEID mech-
anism to be enforced. In particular For example, the PTE[SA] bit
and the SEID and RWX bits [rom the SEID Table are included in a
new TLB entry when it is created. Consequently, for a TLB hit this
information much match when PTE(SA)=1, otherwise it is 1gnored.

When ACM firmware makes changes to the SETD table, it must
perform the appropriate TLB invalidate operations to maintain con-
sistency of the TLB with the SETD Tuble.

5.6 New Interrupts

There are three new interruptls the ultravisor control interrupt,
The data SEIIY tault interrupt and the instruction SEID fault inter-
rupt. All of these interrupts pass control 10 the ACM [irmware.

5.6.1 UltravisorControl Interrupt

The ultravisorcontrol interrupt can only occur when ultravisor-
mede is enabled (SEIDBAR,, = 1). When enabled it will always be
generated if the the PTCR (Page Table Control Register) register is

changed while not in ultravisor mode. It will also be generated hen
an SVM is running, (ACMCRgy = 1), and there is a transition from
hypervisor to problem state via an hrfid or rfid. Finally. if the ACM
firmware has requested notification of VM changes, (ACMCRpy =
1), it will be generated if LPIDR is changed. Whenever the ultravi-
sor control interrupt oceurs USRRO 15 Sct to the effective address of
the instruction that caused the interrupt. USRRI is set to a "copy”
(some bits are always sel 1o zere) ol the MSR at the time of the
interrupt. Control is passed to the ultravisorthrough its interrupt
veetor.

5.6.2 Data SEID Mismatch Interrupt

A Data SEID Mismatch interrupt oceurs when a data access can-
not be performed because of an SEID fault for the real page being
accessed.

An SEID fault occurs if an SEID in the SETDR of the entity does
not maich the SEID of the page. For the SEID to match the access
also has to match which means matching the page size, access type
(RWX) and, for a cached translation matching the privilege level.

TSRRO and USRRI1 sct similar to the ultravisor control interrupt.
Except that bits 33,34, and 35 in USRRI are used to indicate where
the lault oceurred (they are all zero [or the ultravisor control inter-
rupt). Bit 36 an bits 42:47 are set to 0 (as in the ultravisor control
interrupt). The remainder of the register is loaded trom the MSR.

5.6.3  Instruction SEID Mismatch Interrupt

An Instruction SEID Mismatch interrupt occurs when instruction
access cannot be performed because of an SEID fault (as previously
delined) lor (he real page being accessed by the current process.
USRRO and USRRI are set in the same way as for the Data SETD
mismatch interrupt.

5.7 Modified Interrupts

A few of the existing interrupts have been maodified to account
for the changes introduced by ACM. In ultravisor mode all of these
are reflected to the ACM firmwarce. For example, The trace inter-
rupt does not trace the wrfid instruction. Whenever a Hypervisor
Data Storage interrupl oceurs, it is rellected o the ACM firmware
with HETR register is set to a copy of the instruction that caused the
interrupt.

Tor Floating-Point Unavailable, VSX Unavailable, and Vector
Unavailable these interrupts occur when an instruction is executed
from one of these facilitics and the ACMCR indicates that the facil-
ity is not available (ACMCR~y = 1, ACMCRyy = 1, ar ACMCRyx
=1)

A Hypervisor Virtualization interrupt occurs and is reflected to
the ACM firmware when ACMCR indicates that this should occur.
Tf ACMCRyg =0 then these interrupts go to the hypervisor and when
ACMCR s = 1 They are reflected to the ACM firmware.

When a System Call instruction is executed bits 42 and 43 in
SRR1 can be used to distinguish between veall, heall and syscall.
The LEV field in the SC instruction LEV=0) is a syscall, LEV=1
(both bits off) is a heall and LEV=2 (42 an, 43 off) (or LEV=3 42
oft 43 on) is a ucall.

‘When one of these interrupts occurs the following registers are
also set: USRRO is set to the effective address of the instruction
where the interrupt occurred. TTSRR1 is a copy of the MSR cxcept
bits 33-36 and bits 42-47 are cleared.

5.8 New Instructions

We added ultravisor return trom interrupts (URFID) and a Real
Mode invalidate Entry global (RMIEG) instructions.
The URFID instruction is ultravisor mode privileged instruction
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Figure 10: Format of the ultravisorreturn from inter-
rupt, URFID instruction
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Figure 11: Format of the real mode invlaide entry global,
RMIEG, instruction

and illustrated in figure 10. The next instruction executed will
be taken from UUSRRO and the new MSR will be generated from
USRRI. If no pending exceptions are enabled, then the next in-
struction is [elched. under control of the new MSR value. Other-
wise, the highest priority interrupt will cccur and the value placed
into SRR{, HSRR( or USRR{ by the interrupt processing mecha-
nism is the address of the instruction that would have been executed
next had the interrupt not triggered.

THe RMIEG instructions is a new hypervisor privileged instruc-
tion fer invalidation of real mode translations. It invalidates transla-
tion caches on all threads in the system. The format of the instruce-
tion is illustrated in figure 11. All entries in the translation cache
that translate the indicated EA and have 4 page size that is cqual
to or smaller than the page size specified in RB are invalidated by
setting the valid bit to 0, and remaining lields to undefined values.

5.9 Modified Instructions

Figure 12 shows the layout of the systemn call instruction. When
the ultravisor mode is enabled, SEIDBAR). = 1, if LEV=1 then the
hypervisor is envoked and il LEV=2 the ACM (irmware is invoked.
When the ultravisor mode is not enabled, SEIDBARg = 0, bit 5
of the LEV field (instruction bit 25) is reserved with a value of ().
Consequently if LEV=2, the supervisor is invoked, and if LEV=3,
the hypervisor is invoked.

The system linkage instructions rfid, rfdse. and hrfid arc modi-
tied to not change the value of MSRyv. The Move To/From System
Register Instructions are modificd to accept the register numbers
for the new Ulteavisor special purpose registers.

6. BUILDING TYPE 1 ACM firmware

The ACM firmware uses the previously described hardware to
assign SEIDs (or color) resources within the systems, memory, and
threads of control. This separates those resources which are pro-
tected from one another and from those resources which are not
protected.  When ultravisor mode is cnabled the ACM firmwarc
is the software that receives control after secure and wusted boot.
Once activated ACM firmware initialize all of its inemal strue-
tures, measure and passes contol to the next software usvally a
hypervisor or O8. During this process ACM [irmware also extracls
the private key of the machine from the TPM and extends the PCR
so thal no other soltware has access (o the key.

The hardware described in section 5 enable the ACM firmware
o keep memory separated by the use of the SEID table (see section
5.5). During normal execution ACM firmware only receives con-
trol as a resule of an interrupt. There is also no timer that expires
causing an interrupt to return control to ACM firmware. A full im-
plementation of ACM firmware must be thread safe and re-entrant.
The prototype version of ACM firmware reported on in this docu-
ment is currently single threaded. Interrupts are not disabled while

17 " I "

16

LEV 1

30

11 31

Figure 12: Format of the System Call instruction

ACM firmware is running. On a server-class processor there are
multiple cores and multiple threads per core. There will only be
one copy of the ACM firmware which will run on every core and
every thread.

When ultravisor mode is active, even if no SVMs are executing
ACM firmwaremust handle all SEID (secure Entity 1D) faults (the
SEID table is filled on-demand); Handle ACM firmwarc control
calls; and monitor page tables.

ACM firmware controls all resources in the machine that could
allow a Hypervisor or OS5 to inspect a Secure Virtual machine. Con-
trol is transferred w0 ACM firmware when any component in the
system touches one of these resources, ACM ficmware will also get
control when any sollware touches (read, wrile, or execule) mem-
ory that is not assigned to it, If ultravisormode is enabled, control
will be transferred to ACM (irmware when the target ol the syscall
indicates its target is ACM firmware or if a syscall targeting the
hypervisor is made by an SVM. Finally if ACM firmware indicates
the need to detect VM changes or it wants to receive hypervisor vir-
tulization interrupts, it will receive control whenever the hypervisor
changes LPIDR (scc scetion 5.2 )

ACM ftirmware will not support KSM [6] for secure virwal ma-
chines. Because ACM lirmware uses the TAPM 18] mode of AES
127, 12], even if two secure virtval machine have identical pages,
when encrypted they will appear differently in memory. Because
KSM cannot be allowed to see the unencrypted contents, it would
find nothing to share. Also allowing KSM to operate when SVMs
arc running causes 4 large number of unnecessary eneryptions and
decryptions.

The hypervisor is stll responsible for paging virtual machines,
coensequently it must have access to the SYM memory. ACM firmware
assurcs that whenever aceess is granted to an SVM’s memory, it is
encrypted with integrity. Integrity protection enables ACM firmware
1o determine whether any component that had access o SVM mem-
ory, made an unauthorized modification, The insecure page feature
provided by ACM enables an SVM to securely communicate with
another entity assuming it has appropriately protected the contents
of the insecure memory. This (eature also enables the SVM to uti-
lize 1/O.

6.1 VM Assumptions

Our work considers Linux VMs running on the PowerLinux QE-
MU/KVM cnvironment. Tn this environment a VM disk image con-
sists of PReP hoot, boot, and root partitions. The PReP Boot parti-
tion contains the bootloader, i.e.. grub.core. The boot partition con-
tains Linux kernels and their initial-RAM file system (initramfs)
imagcs. The root partition contains the root file system.

‘We make the following three assumptions about VM images that
are converted into SVMs 2. First, the root partition is enerypted
using dm-crypt |25, 1], a kernel level block-layer encryption mech-
anism. During boot, the dm-crypt passphrase is provided to the
kernel to unlock the encrypted partition where the root file sys-
tem resides. Second. Linux kemel images are digitally signed. and
Linux distro public keys are available for verifying kernel signa-
tures. Finally, (iles in the initram[ls are digitally signed and the

*Tooling to convert a YM into an SVM is not discussed in this
paper.
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kernel verifies their signatures during startup.

Although Powerl.inux kernels are not currently digitally signed,
the building blocks exist for implementing secure boot for Power-
Linux VM kernels. The kexec utility, which performs a soft-boot
by replacing the image of a running kernel with another, has been
integrated with the Tniegrity Measurement Archileeture (TMA) [16],
which is part of the Linux integrity subsystem. This integration 2]
cnables images as well as filey in the initramls loaded by kexee 10
be measured and appraised by IMA.

6.2 SVM Image

Though VMs have some security features, e.g., dm-crypt, VMs
still have security gaps at rest and during execution: the PReP hoot
and boot partitions and the VM’s memory can be accessed and tam-
pered with. We resolved these gaps by creating a secure bootloader
that enables ACMmemory protection early in the SVM boot se-
quence.

The sceure bootloader pravides integrity protection of the PReP
boot partition, invokes ACM memory protection, and perfornis a
seeure hoot of the user selected VM kernel. Invoking ACM mem-
ory protection early in the boot process addresses runtime security
and memory allocation issues. It prevents memory lampering even
before the VM kernel is loaded und executed in memory. [t also re-
solves memory allocation issues. When a VM enters secure mode,
any previously allocated memory (i.e.. malloc-ed before going se-
cure) is automatically zeroed, by ACM firmware when referenced
by the VM for the fivst time in sceure mode. Thus, going sceure
early avoids any potential memory initialization issue during Linux
kernel startup.

6.3 SVM Boot Sequence

@
- T
=1 | tinuxkemel

Secure Boolstrap Loader

®
@

Secrets

FDT

®©

RTAS Flattened
deviee tree RTAS
@®| =
ESNM blob
Secure
stack
Y
855 SLOF
Slimline Open Firmuare

ACN Tirmuweare

Figure 13: Secure bootloader startup flow.

The secure bootloader performs three basic operations: (1) re-
trieves from Slimline Open Firmware (SLOF) [4] the device ree
and Run-time Abstraction Service (RTAS) object, which provides
access 1o system dependent services during runtime; (2) requests
ACM protection by invoking esm ucall passing a reference to the
esm blob; and (3) decompresses and loads Linux-Petitboot’. The
petitboot application then loads and boots the VM kemel in the
boot file system. Figure 13 shows the secure bootloader interacting
with SLLOF, the ACM firmware and other components in memory
when bootstrapping a VM's kernel.

7. EVALUATION

*This is a bootable Linux image configured to run petitboot |3], a
user level bootloader application based on kexec.

7.1 Demonstration

The demonstration we developed for our funding agency has four
phases 1)Booting Linux/KVM, 2) Booting a Normal virmal ma-
chine (NVM) on top of Linux/KVM. 3) Booting a sccure virlual
machine (SYM} on top of Linux/KVM, and 4)Running a test pro-
gram that illustrates the security (catures of the architecture and
the protections afforded an SYM. At the end of the demo, ACM
flirmware Llerminales an SVM when it deteets an integrity faolt, in-
dicating that the SVM memory has been tampered with. Tables 3
and 4 are the performance measurements taken during the demo.

Phase one starts with booting a Linux/KVM hypervsor. During
this boot, the dynamic construction of the SEID table by the ACM
firmware can be observed (if the proper flags are set). This demon-
strates that an unmedified hypervisor runs (boots) on top of ACM
firmware. After the hypervisor boots phase two of the demo starts.
We boot an unmodified ' normal virtual machine (NVM) which
confirms that an NVM runs on tap of the hypervisor tunning on
ACM firmware. [n phase 3 we boot a secure VM (SVM). Boot-
ing of the SYM requires h-call support and vio support in ACM
firmware. In order to boot secure virtual machines, we built the
hoot loader desctibed in section 6.3.

After the SVM has booted the final phase, phased, runs a script
that queries some information in the NVM from the hypervisor,
Displays the information in the NVYM w show that they are the
same. Modifies the NV M information from the hypervisor and then
querics the modified information from inside the NVM (o show
that the modifications worked. We modified the gemu-monitor-
command so that it could modily the contents of a VM memory.
This command is used by our demo script to display and modify
VM memory. Next the deme seript queries the "seerets™ of the
SVM from the hypervisor, which shows that the hypervisor can-
not see the secrets. Then the demo queries the secrels from inside
the SVM to illustrate that they are unchanged. Next we query the
SVM seerets again (rom within the hypervisor which shows that
euach time the hypervisor locks into the SVM the encrypted infor-
mation looks dilferent even though nothing was changed. We query
the secrets from within the SVM again to show that they are still
unchanged. Next we modify the secrets in the SVM from within
the hyperviser. Finally from within the SVM we query the secrets
again. This causes a decryption of the page the hypervisor modi-
fied. Consequently, ACM firmware detects the integrity fault that
was caused by the hypervisor moditying the page and terminates
the SVM.

7.2 Performance

Bool ACM KVM NVM SVM
ACM Evcals O | 4194421 | 2,810,554 | 3,836.687
ACM Cycles 9868 M 4981 M Se4TM
Run Cycles 20.506M | 2423506 | 21.019M
ACM Failures

Table 2: Cycle counts for initial hardware design for initializ-
ing ACM, booting KVM, booting an NVM, booting an SVM,
and the demo described in section 7.1. These cycle counts cor-
d to the measur ts in table 3.

¥ L

ACM firmware colleets Time Base on entry 10 or exit from ma-
jor components. Time Base is an architected register supported in
our simulator [8] that counts the machine cycles from resel. Since
we can boot Linux/KVM and boot multiple {our Demo boots two)

*A virtual machine that boots on an unmodified P8 running Lin-
ux/KVM as the hypervisor. The binary of the VM was moved to
the simulator for this phase.
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virtnal machines on top, the prototype ACM firmware is sufficient
to get initial measurements of the overheads imposed by this ap-
proach.

Our performance measurements were taken during the execution
of the demonstration described in section 7.1. Each table has five
colummns Init ACM, boot KVM, Boot NVM, boot SVM, and Demo.
these columns identify the measurements taken during these phases
of the demo. The init ACM phase covers time zero until ACM
passes control 1o the hypervisor. On the left hand side of both ta-
bles are the ACM firmware operations we measured. Operations
starting with uv are ultravisor initialization (init), control (edl), ze-
roing of memory (zero), exception (excp), encryption and decryp-
tion {iapm}, and hashing (hash). Operations that begin with uc are
tracking ultravisor calls. The tables break out two calls starting an
SVM (esm) and communicating with slof (slof) all others are rela-
tively minor and captured under uefcall). Those that begin with pte
are related to page table management: creating a new page table
(new), creating a secure page table (sec) and handing a data stor-
age interrupt to a page table{dsi). The line that begins with vio, is
the cycle count for type-1 virtual 10 support. The line that begins
with fp is the cost of handling floating point unavailable interrupts
*, The lines that begin with isi and dsi are the cycle count of pro-
cessing dsi and isi seid faults. The hv(mmio) is the cycle count for
type-1 support for MMIO, The line tagged hv{wrap} is the cycle
count for protecting h-calls from the SVM to the hypervisor. It is
important to note that the measurements associated with Init ACM
are one time cost of starting a machine. Also the measurements as-
sociated with pte(new) and pte(sec) are the cost of creating a page
table when a VM starts.

Table 2 gives an overview of the performance of the architecture
as describe in section 5. The first thing we notice is that there is a
92% overhead for booting LinuxK'VM. This is excessive but since
it is a one time cost it may be acceptable. We also see that there
is a 26% overhead for booting a NVM. This is also excessive and
is aresult of having the ACM firmware track all page table writes.
Finally the overhead on the SVM is 34%. These last two over-
heads are not one time cost. The fact that this overhead is mostly
associated with page table management can be confirmed by ex-
amining table 3. While KVM is booting, it constructs a page table
that covers all of the physical memory it knows of. Once the ACM
firmware finds out about this table, it must go through the page
table and confirm that there are no, sensitive translations. Going
through the newly constructed table is represented by the pte(new)
entry in the table. Managing the modifications made to the page
tables is represented primarily by the pte(dsi) line in the table.

Table 3 give the detailed performance breakdown for the previ-
ously discuss functions. Table 4 list the average number of cycles
for each measured operation per phase. In these two tables a blank
means that the operation did not occur in the phase, We can see
from these two tables that page table mangement is a significant
cost for hoth the NVM and SVM.

8. DISCUSSION

This paper reports on our protections for VM running on a server,
stand alone or in a cloud, The protection is rooted in hardware that
starts with a secore and trusted boot. The private key of the server
is sealed to a PCR that includes a measurement of ACM firmware.
If that measurement is not correct the ACM firmware will not have
access to the private key and will not be able to run any secure
executables. While ACM firmware is initializing itself it gets a

*Measures when the ultravisor had to do a delayed state save for
floating point and vector registers,

operation | Init ACM | boot KVM | bootNVM | boot SVM | Demo
uv{init) 3993304 |

ple(new) S8TM 1M nM

pre(sec) 9,919,570

pteidsi) 2211 2092 2,101

vio(dsi) 351

isi seid 281,884 518 | 4,890
dsi seid 2398 2,567 1238 | 5569
uv{iapm ) 4,861 | 4883
uvihash} 154,707

uv(zero) 182 | 3582
fp*unavl 361 413 3
uvietl} 414 403 408 406
uviercp) 447 463
hvimmio} L]

heiwrap) 75 | 2210
uc{slol) | 12,677

ucfcally 645,236

nefeemy 26 M

Table 4: This table list the average cycle count (total eycles di-
vided by number of occurrences) for each of the operations de-
scribed in table 3.

random number form the TPM which it nses to seed its random
number generation process. Once ACM firmware has the private
key it can run those executables that have been configured for it

This proposal uses cryptography to protected the SVM while it
is stored on disk. Each SVM includes a region, called the blob that
is enerypted under the private key (or keys) of the machine (or ma-
chines) that are authorized to execute it. The blob contains the root
of the integrity tree that protects the VM and the symmetric key
used 1o encrypt the SVM. It also contains a clear text,with integrity
protection, that code that is executed when the VM starts. This
code contains a syscall to the ACM firmware requesting a transi-
tion to secure mode. As has been discussed the ACM firmware
deerypts the blob. The blob contains all secrets, such as DM crypt
pass phrases needed to start the SVM. Finally it checks that areas
of the VM that have only been integrity protected have not been
modified. If these checks passes ACM firmware generates a run
time key that will be used to protect the SVM when it is in com-
puler Memory.

When the SVM is in memory ACM firmware assures that the
clear text is only available to the execoting SVM. An integrity tree
protects all of memory and the virtual address is part of the en-
cryption key, These features prevent replay attacks and attacks
based on moving a legitimate block of encrypted memory. The hy-
pervisor and any other components that have a legitimate right to
access the SVM memory only see an encrypted form. To facili-
tate 1/O and proper communications with the hypervisor the SVM
can mark pages as vnprotected andfor shared with the hypervisor.
Unprotected pages have no confidentiality or integrity information.
unprotected page does not have to be shared with the hypervisor.

In a full implementation approximately 118 h-calls have to be
protected. The ACM firmware provides wrappers which gnarantee
that only the state necessary to preform the requested function is
transimitted 1o the hypervisor and only the results of the function
are returned from the hypervisor. In the prototype all of the imple-
mented heall wrappers are in the ACM firmware. This approach
15 trapsparent 10 a VM that will be converted to a SVM, but it in-
creases the size of ACM firmware.

The approaches described in this paper includes enabling 140 for
SVMs. This is a desirable feature, and has to be considered as
alternatives are explored. On the other hand, not enabling /O make
the security analysis of a SVM somewhat simpler.

During this project we discussed building type-1 and type-2 ACM
firmware. We felt that a type-1 implementation would me more
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Init ACM boot KVM boot NVM boot VM Demo
Count Cycles Count Cyeles Count Cycles Count Cyeles count Cycles
T | 3,993,304
1 38T M 1 1M 1 1M
1| 981950
phedsi) A18,467 | 9240 M | 2,064,173 | &737M | 1,575,156 | 3303 M | 234,57 BIM
vio(dsi) L672 | 6,544,812
isi seid 2 | 563,790 12,815 66 M 505 | 2.460929
dsi seid 12,947 31 M 3,109 13M 93927 LIa3 M 2790 15M
wviapm) 8,521 MM 380 | 1,189,851
uvihash) 4.144 641 M
w{zem) 30,617 | 7238600 755 | 2,606,566
fp*unavl 2 T2 19,823 | 8,189,570 397 149,825
uvictl) 2 828 541272 219 M 470,473 150 M 1.554 648,105
w{exnep) 1,663,713 FaaM | 124l | 5752586
hvimmio) 488 176,046
he{wrap) 1.481,803 111 M &450 19M
ue(slof) sl 671,902
uefeall) 6 | 3871421
ue{esm) 1 261 M

Table 3: Performance measurements from initial architecture. Each of the four phases of the demo are measured separately. For
each operation in each phase we list the number of occurrences under count and the total cycles consumed by all occurrences under

cycles,

easily accepted assuming the performance were acceptable. The
type-1 ACM firmware represents an upper bound for the size of
ACM firmware. One of our goals is for the ACM firmwareto be
small enough for some formal verification process. While have
done formal verification of the model presented in section 4, the
implementation describe in this paper differs from the one we ver-
ified.

ACM and ACM firmware cammol protect against poorly writlen
software or security exposures that exist inside the SVM whether in
its applications or operating system. For example this includes the
usage of a web browser that goes to a site that exploits a vulnerabil-
ity in the browser to compromise the SVM. A ibOS or micro kernel
approach promises to redoce the OS to its minimal footprint which
would minimize the potential exposures within an SVM, Other ap-
proaches are required to deal with these issues

9. FUTURE WORK AND CONCLUSIONS

We have demonstrated that it is possible 1o create a type-1 ACM
firmware. The advantage of not having to include the infrastructure
or cloud provider inside the security domain is significant, How-
ever, the associated overhead, runtime and boot, is higher than we
were targeting. As was observed, ACM alone is not sufficient 1o
protect against all threats to VMs, When security is a concem,
the overheads associated with booting an SVM may be acceptable.
However, we feel that the current overhead can be reduced.

As the work continues, we will explore techniques for reduc-
ing the impact of this architecture. We believe that the overheads
quoted in this paper can be reduced by paravirtualization. Chang-
ing the hardware approach may also affect the overhead. The type-
1 ACM firmware presented in this paper has to discern what the
NVM and hypervisor are doing without hints, We expect that the
reported overhead can be reduced with a type-2 implementation
since paravirtualization wouold give hints to the ACM firmware,
substantially reducing the cost of execution. It is also future work
to determine the correct balance between new hardware and par-
avirtualization of the hypervisor and/or SVMs.

One of goals is to keep the ACM firmware small enough to be
formally verified through some mechanism. Consequently it is crit-
ically important to minimize the size. One alternative approach is
to package as much of the heall wrapper as possible with the VM.
This makes the tooling somewhat more complex but minimizes the

size of the ACM firmware. A disadvantage of this is exposing the
wrapper code 1o attacks from a compromised VM. While the cur-
rent protolype exceeds the size of systems that have been formally
verified in the past. Perhaps by changing the architecture concur-
rently with the increasing capability of verification systems we may
be able to achieve this objective.
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A set of slides extracted from a larger presentation given by Brian Thompto, an IBM employee, at
the Hot Chips 2016 Conference, August 21-23, in Cupertino CA. This presentation was not
generated by this project but is included as a reference for the technology transfer and
commercialization status of the technologies developed under this project. The relevant slides are
pages 4 and 10, and specifically the reference to “Hardware Enforced Trusted Execution”. The
presentation is reference [7] in our list and can be found at

http://www.hotchips.org/wp-content/uploads/hc\ archives/hc28/HC?28.23-Tuesday-
Epub/HC28.23.90-High-Perform-Epub/HC?28.23.921-.POWER9-Thompto-1BM-final.pdf.
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LIST OF SYMBOLS ABBREVIATIONS AND ACRONYMS

ACM Access Control Monitor

AFRL Air Force Research Laboratory
ARM acorn RISC machine

BIOS basic input output services

DDR double data rate

DHS Department of Homeland Security
DRAM dynamic RAM

ELF executable and linkable format
ESM enter secure mode

FIFO first in first out

eBIOS extension to SEA BIOS

eTIS emulated hardware TPM interface for QEMU
eTPM swTPM emulation for QEMU
EVM extended verification module
CPU central processing unit

GPR general purpose register

FPGA field programmable gate array
IBM International Business Machines
IMA integrity measurement architecture
loT Internet of things

KVM kernel virtual machine

KSM kernel same page merging

LPC low pin count

LXC Linux containers

NVM normal virtual machine

OAT open attestation

PCR platform configuration register
PPC Power PC

QEMU quick emulator

RAM random access memory

RHEL Redhat Enterprise Linux

RISC reduced instructions set computing
RTAS real time abstraction services
RTM Root of trust for measurement
SB++ secure blue ++

SEID secure entity identifiers

SGX Software Guard Extensions

SLOF simline open firmware

SPI serial programming interface
SRAM static RAM

STG Systems and Technology Group
SVM secure virtual machine

S&T Science and Technology Directorate
SWTPM software based TPM emulator
TCB trusted computing base

TCG Trusted Computing Group
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TCL
TPM
TPMDD
VM
VIPM

tool control language
Trusted Platform Module
TPM device driver
virtual machine

virtual TPM
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